» Articles » PMID: 33574069

Molecular Principles of Piwi-mediated Cotranscriptional Silencing Through the Dimeric SFiNX Complex

Abstract

Nuclear Argonaute proteins, guided by their bound small RNAs to nascent target transcripts, mediate cotranscriptional silencing of transposons and repetitive genomic loci through heterochromatin formation. The molecular mechanisms involved in this process are incompletely understood. Here, we show that the SFiNX complex, a silencing mediator downstream from nuclear Piwi-piRNA complexes in , facilitates cotranscriptional silencing as a homodimer. The dynein light chain protein Cut up/LC8 mediates SFiNX dimerization, and its function can be bypassed by a heterologous dimerization domain, arguing for a constitutive SFiNX dimer. Dimeric, but not monomeric SFiNX, is capable of forming molecular condensates in a nucleic acid-stimulated manner. Mutations that prevent SFiNX dimerization result in loss of condensate formation in vitro and the inability of Piwi to initiate heterochromatin formation and silence transposons in vivo. We propose that multivalent SFiNX-nucleic acid interactions are critical for heterochromatin establishment at piRNA target loci in a cotranscriptional manner.

Citing Articles

Drosophila Modulo is essential for transposon silencing and developmental robustness.

Parikh R, Nayak D, Lin H, Gangaraju V J Biol Chem. 2025; 301(3):108210.

PMID: 39848495 PMC: 11879677. DOI: 10.1016/j.jbc.2025.108210.


piRNA-Guided Transposon Silencing and Response to Stress in Germline.

Ho S, Theurkauf W, Rice N Viruses. 2024; 16(5).

PMID: 38793595 PMC: 11125864. DOI: 10.3390/v16050714.


Stress Induced Activation of LTR Retrotransposons in the Genome.

Milyaeva P, Kukushkina I, Kim A, Nefedova L Life (Basel). 2023; 13(12).

PMID: 38137873 PMC: 10745035. DOI: 10.3390/life13122272.


The NSL complex is required for piRNA production from telomeric clusters.

Iyer S, Sun Y, Seyfferth J, Manjunath V, Samata M, Alexiadis A Life Sci Alliance. 2023; 6(9).

PMID: 37399316 PMC: 10313855. DOI: 10.26508/lsa.202302194.


What Are the Functional Roles of Piwi Proteins and piRNAs in Insects?.

Santos D, Feng M, Kolliopoulou A, Taning C, Sun J, Swevers L Insects. 2023; 14(2).

PMID: 36835756 PMC: 9962485. DOI: 10.3390/insects14020187.


References
1.
Koch C, Honemann-Capito M, Egger-Adam D, Wodarz A . Windei, the Drosophila homolog of mAM/MCAF1, is an essential cofactor of the H3K9 methyl transferase dSETDB1/Eggless in germ line development. PLoS Genet. 2009; 5(9):e1000644. PMC: 2730569. DOI: 10.1371/journal.pgen.1000644. View

2.
Rapali P, Radnai L, Suveges D, Harmat V, Tolgyesi F, Wahlgren W . Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One. 2011; 6(4):e18818. PMC: 3078936. DOI: 10.1371/journal.pone.0018818. View

3.
Saito K, Nishida K, Mori T, Kawamura Y, Miyoshi K, Nagami T . Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 2006; 20(16):2214-22. PMC: 1553205. DOI: 10.1101/gad.1454806. View

4.
Brennecke J, Aravin A, Stark A, Dus M, Kellis M, Sachidanandam R . Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007; 128(6):1089-103. DOI: 10.1016/j.cell.2007.01.043. View

5.
Grewal S . RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev. 2010; 20(2):134-41. PMC: 3005588. DOI: 10.1016/j.gde.2010.02.003. View