» Articles » PMID: 33462485

Large-scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition

Overview
Journal Nat Genet
Specialty Genetics
Date 2021 Jan 19
PMID 33462485
Citations 737
Authors
Affiliations
Soon will be listed here.
Abstract

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10 < P < 5 × 10) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.

Citing Articles

Traumatic Brain Injury and Gut Microbiome: The Role of the Gut-Brain Axis in Neurodegenerative Processes.

Lin D, Howard A, Raihane A, Di Napoli M, Caceres E, Ortiz M Curr Neurol Neurosci Rep. 2025; 25(1):23.

PMID: 40087204 DOI: 10.1007/s11910-025-01410-0.


Causal relationships of gut microbiota and blood metabolites with ovarian cancer and endometrial cancer: a Mendelian randomization study.

Chen J, Chen X, Ma J J Ovarian Res. 2025; 18(1):54.

PMID: 40082983 PMC: 11905533. DOI: 10.1186/s13048-025-01630-5.


Causal associations between 26 musculoskeletal disorders and gut microbiota: a Mendelian randomization analysis with Bayesian validation.

Wang Y, Sun Y, Liao H World J Microbiol Biotechnol. 2025; 41(3):106.

PMID: 40080232 PMC: 11906543. DOI: 10.1007/s11274-025-04318-6.


Investigating Causal Links Between Gut Microbiota and Neurological Disorders via Genome-Wide Association Studies.

Jiang Q, Wu L, Wang X, Gao Z, Liu X, Zhang W Mol Neurobiol. 2025; .

PMID: 40075040 DOI: 10.1007/s12035-025-04770-3.


The association between gut microbiota and accelerated aging and frailty: a Mendelian randomization study.

Yan Z, Guan G, Jia H, Li H, Zhuoga S, Zheng S Aging Clin Exp Res. 2025; 37(1):82.

PMID: 40074999 PMC: 11903541. DOI: 10.1007/s40520-025-02971-3.


References
1.
Gilbert J, Blaser M, Caporaso J, Jansson J, Lynch S, Knight R . Current understanding of the human microbiome. Nat Med. 2018; 24(4):392-400. PMC: 7043356. DOI: 10.1038/nm.4517. View

2.
Zhernakova A, Kurilshikov A, Bonder M, Tigchelaar E, Schirmer M, Vatanen T . Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016; 352(6285):565-9. PMC: 5240844. DOI: 10.1126/science.aad3369. View

3.
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K . Population-level analysis of gut microbiome variation. Science. 2016; 352(6285):560-4. DOI: 10.1126/science.aad3503. View

4.
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D . Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018; 555(7695):210-215. DOI: 10.1038/nature25973. View

5.
Goodrich J, Waters J, Poole A, Sutter J, Koren O, Blekhman R . Human genetics shape the gut microbiome. Cell. 2014; 159(4):789-99. PMC: 4255478. DOI: 10.1016/j.cell.2014.09.053. View