» Articles » PMID: 32906142

SLC25A51 is a Mammalian Mitochondrial NAD Transporter

Abstract

Mitochondria require nicotinamide adenine dinucleotide (NAD) to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD transporters have been identified in yeast and plants, but their existence in mammals remains controversial. Here we demonstrate that mammalian mitochondria can take up intact NAD, and identify SLC25A51 (also known as MCART1)-an essential mitochondrial protein of previously unknown function-as a mammalian mitochondrial NAD transporter. Loss of SLC25A51 decreases mitochondrial-but not whole-cell-NAD content, impairs mitochondrial respiration, and blocks the uptake of NAD into isolated mitochondria. Conversely, overexpression of SLC25A51 or SLC25A52 (a nearly identical paralogue of SLC25A51) increases mitochondrial NAD levels and restores NAD uptake into yeast mitochondria lacking endogenous NAD transporters. Together, these findings identify SLC25A51 as a mammalian transporter capable of importing NAD into mitochondria.

Citing Articles

Mitochondrial genetics, signalling and stress responses.

Liu Y, Sulc J, Auwerx J Nat Cell Biol. 2025; 27(3):393-407.

PMID: 40065146 DOI: 10.1038/s41556-025-01625-w.


β-Nicotinamide mononucleotide blocks UVB-induced collagen reduction via regulation of ROS/MAPK/AP-1 and stimulation of mitochondrial proline biosynthesis.

Zhang Y, Ai C, Huang F, Zhao J, Ling Y, Chen W Photochem Photobiol Sci. 2025; 24(2):293-306.

PMID: 40025354 DOI: 10.1007/s43630-025-00692-0.


GEMCAT-a new algorithm for gene expression-based prediction of metabolic alterations.

Sharma S, Sauter R, Hotze M, Prowatke A, Niere M, Kipura T NAR Genom Bioinform. 2025; 7(1):lqaf003.

PMID: 39897103 PMC: 11783570. DOI: 10.1093/nargab/lqaf003.


SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters.

Chen M, Yuan L, Chen B, Chang H, Luo J, Zhang H Nat Commun. 2025; 16(1):1181.

PMID: 39885119 PMC: 11782521. DOI: 10.1038/s41467-025-56402-y.


NADH Reductive Stress and Its Correlation with Disease Severity in Leigh Syndrome: A Pilot Study Using Patient Fibroblasts and a Mouse Model.

Ishima T, Kimura N, Kobayashi M, Watanabe C, Jimbo E, Kobayashi R Biomolecules. 2025; 15(1).

PMID: 39858433 PMC: 11764390. DOI: 10.3390/biom15010038.


References
1.
Palmieri F, Rieder B, Ventrella A, Blanco E, Do P, Nunes-Nesi A . Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem. 2009; 284(45):31249-59. PMC: 2781523. DOI: 10.1074/jbc.M109.041830. View

2.
Todisco S, Agrimi G, Castegna A, Palmieri F . Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem. 2005; 281(3):1524-31. DOI: 10.1074/jbc.M510425200. View

3.
Berger F, Ramirez-Hernandez M, Ziegler M . The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci. 2004; 29(3):111-8. DOI: 10.1016/j.tibs.2004.01.007. View

4.
Yang H, Yang T, Baur J, Perez E, Matsui T, Carmona J . Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007; 130(6):1095-107. PMC: 3366687. DOI: 10.1016/j.cell.2007.07.035. View

5.
VanLinden M, Dolle C, Pettersen I, Kulikova V, Niere M, Agrimi G . Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells. J Biol Chem. 2015; 290(46):27644-59. PMC: 4646015. DOI: 10.1074/jbc.M115.654129. View