6.
Essuman K, Summers D, Sasaki Y, Mao X, DiAntonio A, Milbrandt J
. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD Cleavage Activity that Promotes Pathological Axonal Degeneration. Neuron. 2017; 93(6):1334-1343.e5.
PMC: 6284238.
DOI: 10.1016/j.neuron.2017.02.022.
View
7.
Langelier M, Eisemann T, Riccio A, Pascal J
. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr Opin Struct Biol. 2018; 53:187-198.
PMC: 6687463.
DOI: 10.1016/j.sbi.2018.11.002.
View
8.
Chini E, Chini C, Espindola Netto J, de Oliveira G, van Schooten W
. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol Sci. 2018; 39(4):424-436.
PMC: 5885288.
DOI: 10.1016/j.tips.2018.02.001.
View
9.
Loreto A, Antoniou C, Merlini E, Gilley J, Coleman M
. NMN: The NAD precursor at the intersection between axon degeneration and anti-ageing therapies. Neurosci Res. 2023; 197:18-24.
DOI: 10.1016/j.neures.2023.01.004.
View
10.
Chini C, Cordeiro H, Tran N, Chini E
. NAD metabolism: Role in senescence regulation and aging. Aging Cell. 2023; 23(1):e13920.
PMC: 10776128.
DOI: 10.1111/acel.13920.
View
11.
Wang Y, He J, Liao M, Hu M, Li W, Ouyang H
. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur J Med Chem. 2018; 161:48-77.
DOI: 10.1016/j.ejmech.2018.10.028.
View
12.
Stromland O, Diab J, Ferrario E, Sverkeli L, Ziegler M
. The balance between NAD biosynthesis and consumption in ageing. Mech Ageing Dev. 2021; 199:111569.
DOI: 10.1016/j.mad.2021.111569.
View
13.
Figley M, Gu W, Nanson J, Shi Y, Sasaki Y, Cunnea K
. SARM1 is a metabolic sensor activated by an increased NMN/NAD ratio to trigger axon degeneration. Neuron. 2021; 109(7):1118-1136.e11.
PMC: 8174188.
DOI: 10.1016/j.neuron.2021.02.009.
View
14.
Icso J, Barasa L, Thompson P
. SARM1, an Enzyme Involved in Axon Degeneration, Catalyzes Multiple Activities through a Ternary Complex Mechanism. Biochemistry. 2023; 62(13):2065-2078.
PMC: 10795796.
DOI: 10.1021/acs.biochem.3c00081.
View
15.
Guse A
. Enzymology of Ca-Mobilizing Second Messengers Derived from NAD: From NAD Glycohydrolases to (Dual) NADPH Oxidases. Cells. 2023; 12(4).
PMC: 9954121.
DOI: 10.3390/cells12040675.
View
16.
Nandave M, Acharjee R, Bhaduri K, Upadhyay J, Rupanagunta G, Ansari M
. A pharmacological review on SIRT 1 and SIRT 2 proteins, activators, and inhibitors: Call for further research. Int J Biol Macromol. 2023; 242(Pt 1):124581.
DOI: 10.1016/j.ijbiomac.2023.124581.
View
17.
You Y, Liang W
. SIRT1 and SIRT6: The role in aging-related diseases. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(7):166815.
DOI: 10.1016/j.bbadis.2023.166815.
View
18.
Kanev P, Atemin A, Stoynov S, Aleksandrov R
. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol. 2023; 51(1-2):2-18.
DOI: 10.1053/j.seminoncol.2023.08.001.
View
19.
Burgos E
. NAMPT in regulated NAD biosynthesis and its pivotal role in human metabolism. Curr Med Chem. 2011; 18(13):1947-61.
DOI: 10.2174/092986711795590101.
View
20.
Burgos E, Schramm V
. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. Biochemistry. 2008; 47(42):11086-96.
PMC: 2657875.
DOI: 10.1021/bi801198m.
View