» Articles » PMID: 32873325

PipeComp, a General Framework for the Evaluation of Computational Pipelines, Reveals Performant Single Cell RNA-seq Preprocessing Tools

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2020 Sep 3
PMID 32873325
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

We present pipeComp ( https://github.com/plger/pipeComp ), a flexible R framework for pipeline comparison handling interactions between analysis steps and relying on multi-level evaluation metrics. We apply it to the benchmark of single-cell RNA-sequencing analysis pipelines using simulated and real datasets with known cell identities, covering common methods of filtering, doublet detection, normalization, feature selection, denoising, dimensionality reduction, and clustering. pipeComp can easily integrate any other step, tool, or evaluation metric, allowing extensible benchmarks and easy applications to other fields, as we demonstrate through a study of the impact of removal of unwanted variation on differential expression analysis.

Citing Articles

Elucidating cardiomyocyte heterogeneity and maturation dynamics through integrated single-cell and spatial transcriptomics.

Wang X, Cao L, Chang R, Shen J, Ma L, Li Y iScience. 2025; 28(1):111596.

PMID: 39811652 PMC: 11732507. DOI: 10.1016/j.isci.2024.111596.


Unsupervised multi-scale clustering of single-cell transcriptomes to identify hierarchical structures of cell subtypes.

Song W, Ming C, Forst C, Zhang B Res Sq. 2025; .

PMID: 39764102 PMC: 11703337. DOI: 10.21203/rs.3.rs-5671748/v1.


High-dose intravenous BCG vaccination induces enhanced immune signaling in the airways.

Peters J, Irvine E, Makatsa M, Rosenberg J, Wadsworth 2nd M, Hughes T Sci Adv. 2025; 11(1):eadq8229.

PMID: 39742484 PMC: 11694782. DOI: 10.1126/sciadv.adq8229.


Statistically principled feature selection for single cell transcriptomics.

Dollinger E, Silkwood K, Atwood S, Nie Q, Lander A bioRxiv. 2024; .

PMID: 39463971 PMC: 11507810. DOI: 10.1101/2024.10.11.617709.


The estrogen response in fibroblasts promotes ovarian metastases of gastric cancer.

Hu S, Hu C, Xu J, Yu P, Yuan L, Li Z Nat Commun. 2024; 15(1):8447.

PMID: 39349474 PMC: 11443007. DOI: 10.1038/s41467-024-52615-9.


References
1.
Salomon R, Kaczorowski D, Valdes-Mora F, Nordon R, Neild A, Farbehi N . Droplet-based single cell RNAseq tools: a practical guide. Lab Chip. 2019; 19(10):1706-1727. DOI: 10.1039/c8lc01239c. View

2.
Townes F, Hicks S, Aryee M, Irizarry R . Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. Genome Biol. 2019; 20(1):295. PMC: 6927135. DOI: 10.1186/s13059-019-1861-6. View

3.
Cole M, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E . Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq. Cell Syst. 2019; 8(4):315-328.e8. PMC: 6544759. DOI: 10.1016/j.cels.2019.03.010. View

4.
Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z . Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems. Mol Cell. 2018; 73(1):130-142.e5. DOI: 10.1016/j.molcel.2018.10.020. View

5.
Wang T, Li B, Nelson C, Nabavi S . Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinformatics. 2019; 20(1):40. PMC: 6339299. DOI: 10.1186/s12859-019-2599-6. View