» Articles » PMID: 28418000

SCnorm: Robust Normalization of Single-cell RNA-seq Data

Overview
Journal Nat Methods
Date 2017 Apr 19
PMID 28418000
Citations 132
Authors
Affiliations
Soon will be listed here.
Abstract

The normalization of RNA-seq data is essential for accurate downstream inference, but the assumptions upon which most normalization methods are based are not applicable in the single-cell setting. Consequently, applying existing normalization methods to single-cell RNA-seq data introduces artifacts that bias downstream analyses. To address this, we introduce SCnorm for accurate and efficient normalization of single-cell RNA-seq data.

Citing Articles

Transcriptome size matters for single-cell RNA-seq normalization and bulk deconvolution.

Lu S, Yang J, Yan L, Liu J, Wang J, Jain R Nat Commun. 2025; 16(1):1246.

PMID: 39893178 PMC: 11787294. DOI: 10.1038/s41467-025-56623-1.


Single-cell RNA sequencing algorithms underestimate changes in transcriptional noise compared to single-molecule RNA imaging.

Khetan N, Zuckerman B, Calia G, Chen X, Garcia Arceo X, Weinberger L Cell Rep Methods. 2024; 4(12):100933.

PMID: 39662473 PMC: 11704610. DOI: 10.1016/j.crmeth.2024.100933.


Quantitative comparison of single-cell RNA sequencing versus single-molecule RNA imaging for quantifying transcriptional noise.

Khetan N, Zuckerman B, Calia G, Chen X, Garcia Arceo X, Weinberger L bioRxiv. 2024; .

PMID: 39149226 PMC: 11326230. DOI: 10.1101/2024.08.09.607289.


Single-cell omics: experimental workflow, data analyses and applications.

Sun F, Li H, Sun D, Fu S, Gu L, Shao X Sci China Life Sci. 2024; 68(1):5-102.

PMID: 39060615 DOI: 10.1007/s11427-023-2561-0.


Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications.

Ctortecka C, Clark N, Boyle B, Seth A, Mani D, Udeshi N Nat Commun. 2024; 15(1):5707.

PMID: 38977691 PMC: 11231172. DOI: 10.1038/s41467-024-49651-w.


References
1.
Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H . Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008; 132(3):487-98. DOI: 10.1016/j.cell.2007.12.033. View

2.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

3.
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek A . MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16:278. PMC: 4676162. DOI: 10.1186/s13059-015-0844-5. View

4.
Lin Y, Golovnina K, Chen Z, Lee H, Serrano Negron Y, Sultana H . Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster. BMC Genomics. 2016; 17:28. PMC: 4702322. DOI: 10.1186/s12864-015-2353-z. View

5.
Kharchenko P, Silberstein L, Scadden D . Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740-2. PMC: 4112276. DOI: 10.1038/nmeth.2967. View