» Articles » PMID: 32546280

SWISS: Multiplexed Orthogonal Genome Editing in Plants with a Cas9 Nickase and Engineered CRISPR RNA Scaffolds

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2020 Jun 18
PMID 32546280
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

We describe here a CRISPR simultaneous and wide-editing induced by a single system (SWISS), in which RNA aptamers engineered in crRNA scaffold recruit their cognate binding proteins fused with cytidine deaminase and adenosine deaminase to Cas9 nickase target sites to generate multiplexed base editing. By using paired sgRNAs, SWISS can produce insertions/deletions in addition to base editing. Rice mutants are generated using the SWISS system with efficiencies of cytosine conversion of 25.5%, adenine conversion of 16.4%, indels of 52.7%, and simultaneous triple mutations of 7.3%. The SWISS system provides a powerful tool for multi-functional genome editing in plants.

Citing Articles

CRISPR-Cas applications in agriculture and plant research.

Tuncel A, Pan C, Clem J, Liu D, Qi Y Nat Rev Mol Cell Biol. 2025; .

PMID: 40055491 DOI: 10.1038/s41580-025-00834-3.


CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers.

Su-Tobon Q, Fan J, Goldstein M, Feeney K, Ren H, Autissier P Nat Commun. 2025; 16(1):595.

PMID: 39799111 PMC: 11724954. DOI: 10.1038/s41467-025-55957-0.


PAM-relaxed and temperature-tolerant CRISPR-Mb3Cas12a single transcript unit systems for efficient singular and multiplexed genome editing in rice, maize, and tomato.

Liu S, He Y, Fan T, Zhu M, Qi C, Ma Y Plant Biotechnol J. 2024; 23(1):156-173.

PMID: 39387219 PMC: 11672738. DOI: 10.1111/pbi.14486.


PhieDBEs: a DBD-containing, PAM-flexible, high-efficiency dual base editor toolbox with wide targeting scope for use in plants.

Zheng Z, Liu T, Chai N, Zeng D, Zhang R, Wu Y Plant Biotechnol J. 2024; 22(11):3164-3174.

PMID: 39031643 PMC: 11500981. DOI: 10.1111/pbi.14438.


High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants.

Fan T, Cheng Y, Wu Y, Liu S, Tang X, He Y Nat Commun. 2024; 15(1):5103.

PMID: 38877035 PMC: 11178825. DOI: 10.1038/s41467-024-49473-w.


References
1.
Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S . Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun. 2018; 9(1):2338. PMC: 6002399. DOI: 10.1038/s41467-018-04768-7. View

2.
Gao Y, Zhao Y . Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. 2013; 56(4):343-9. DOI: 10.1111/jipb.12152. View

3.
Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S . Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018; 361(6408):1259-1262. PMC: 6368452. DOI: 10.1126/science.aas9129. View

4.
Lowder L, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh T . Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Mol Plant. 2017; 11(2):245-256. DOI: 10.1016/j.molp.2017.11.010. View

5.
Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro E . Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol. 2016; 35(1):31-34. PMC: 5225075. DOI: 10.1038/nbt.3737. View