» Articles » PMID: 38877035

High Performance TadA-8e Derived Cytosine and Dual Base Editors with Undetectable Off-target Effects in Plants

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Jun 14
PMID 38877035
Authors
Affiliations
Soon will be listed here.
Abstract

Cytosine base editors (CBEs) and adenine base editors (ABEs) enable precise C-to-T and A-to-G edits. Recently, ABE8e, derived from TadA-8e, enhances A-to-G edits in mammalian cells and plants. Interestingly, TadA-8e can also be evolved to confer C-to-T editing. This study compares engineered CBEs derived from TadA-8e in rice and tomato cells, identifying TadCBEa, TadCBEd, and TadCBEd_V106W as efficient CBEs with high purity and a narrow editing window. A dual base editor, TadDE, promotes simultaneous C-to-T and A-to-G editing. Multiplexed base editing with TadCBEa and TadDE is demonstrated in transgenic rice, with no off-target effects detected by whole genome and transcriptome sequencing, indicating high specificity. Finally, two crop engineering applications using TadDE are shown: introducing herbicide resistance alleles in OsALS and creating synonymous mutations in OsSPL14 to resist OsMIR156-mediated degradation. Together, this study presents TadA-8e derived CBEs and a dual base editor as valuable additions to the plant editing toolbox.

Citing Articles

CRISPR-Cas applications in agriculture and plant research.

Tuncel A, Pan C, Clem J, Liu D, Qi Y Nat Rev Mol Cell Biol. 2025; .

PMID: 40055491 DOI: 10.1038/s41580-025-00834-3.


In vivo gene editing and in situ generation of chimeric antigen receptor cells for next-generation cancer immunotherapy.

Zhang W, Huang X J Hematol Oncol. 2024; 17(1):110.

PMID: 39533415 PMC: 11559219. DOI: 10.1186/s13045-024-01633-7.


An efficient CRISPR-Cas12a-mediated MicroRNA knockout strategy in plants.

Zheng X, Tang X, Wu Y, Zheng X, Zhou J, Han Q Plant Biotechnol J. 2024; 23(1):128-140.

PMID: 39401095 PMC: 11672732. DOI: 10.1111/pbi.14484.


PAM-relaxed and temperature-tolerant CRISPR-Mb3Cas12a single transcript unit systems for efficient singular and multiplexed genome editing in rice, maize, and tomato.

Liu S, He Y, Fan T, Zhu M, Qi C, Ma Y Plant Biotechnol J. 2024; 23(1):156-173.

PMID: 39387219 PMC: 11672738. DOI: 10.1111/pbi.14486.


Efficient gene editing of a model fern species through gametophyte-based transformation.

Jiang W, Deng F, Babla M, Chen C, Yang D, Tong T Plant Physiol. 2024; 196(4):2346-2361.

PMID: 39268871 PMC: 11638000. DOI: 10.1093/plphys/kiae473.


References
1.
Wang G, Xu Z, Wang F, Huang Y, Xin Y, Liang S . Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biol. 2022; 20(1):45. PMC: 8845244. DOI: 10.1186/s12915-022-01232-3. View

2.
Wang H, Zhang D, Chen M, Meng X, Bai S, Xin P . Genome editing of 3' UTR-embedded inhibitory region enables generation of gene knock-up alleles in plants. Plant Commun. 2023; 5(3):100745. PMC: 10943523. DOI: 10.1016/j.xplc.2023.100745. View

3.
Komor A, Zhao K, Packer M, Gaudelli N, Waterbury A, Koblan L . Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. 2017; 3(8):eaao4774. PMC: 5576876. DOI: 10.1126/sciadv.aao4774. View

4.
Li H, Durbin R . Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26(5):589-95. PMC: 2828108. DOI: 10.1093/bioinformatics/btp698. View

5.
Neugebauer M, Hsu A, Arbab M, Krasnow N, McElroy A, Pandey S . Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol. 2022; 41(5):673-685. PMC: 10188366. DOI: 10.1038/s41587-022-01533-6. View