» Articles » PMID: 30523077

Functionally Diverse Type V CRISPR-Cas Systems

Overview
Journal Science
Specialty Science
Date 2018 Dec 8
PMID 30523077
Citations 199
Authors
Affiliations
Soon will be listed here.
Abstract

Type V CRISPR-Cas systems are distinguished by a single RNA-guided RuvC domain-containing effector, Cas12. Although effectors of subtypes V-A (Cas12a) and V-B (Cas12b) have been studied in detail, the distinct domain architectures and diverged RuvC sequences of uncharacterized Cas12 proteins suggest unexplored functional diversity. Here, we identify and characterize Cas12c, -g, -h, and -i. Cas12c, -h, and -i demonstrate RNA-guided double-stranded DNA (dsDNA) interference activity. Cas12i exhibits markedly different efficiencies of CRISPR RNA spacer complementary and noncomplementary strand cleavage resulting in predominant dsDNA nicking. Cas12g is an RNA-guided ribonuclease (RNase) with collateral RNase and single-strand DNase activities. Our study reveals the functional diversity emerging along different routes of type V CRISPR-Cas evolution and expands the CRISPR toolbox.

Citing Articles

CRISPR-Cas applications in agriculture and plant research.

Tuncel A, Pan C, Clem J, Liu D, Qi Y Nat Rev Mol Cell Biol. 2025; .

PMID: 40055491 DOI: 10.1038/s41580-025-00834-3.


Important applications of DNA nanotechnology combined with CRISPR/Cas systems in biotechnology.

Huang Y, Chen Z, Huang H, Ding S, Zhang M RSC Adv. 2025; 15(8):6208-6230.

PMID: 40008014 PMC: 11851101. DOI: 10.1039/d4ra08325c.


Molecular insights and rational engineering of a compact CRISPR-Cas effector Cas12h1 with a broad-spectrum PAM.

Zheng W, Li H, Liu M, Wei Y, Liu B, Li Z Signal Transduct Target Ther. 2025; 10(1):66.

PMID: 39955288 PMC: 11830025. DOI: 10.1038/s41392-025-02147-5.


Evolutionary diversification and succession of soil huge phages in glacier foreland.

Liao H, Li J, Wang Y, Li H, An X, Wang T Microbiome. 2025; 13(1):18.

PMID: 39838455 PMC: 11748809. DOI: 10.1186/s40168-024-02017-2.


Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data.

Nayfach S, Bhatnagar A, Novichkov A, Estevam G, Kim N, Hill E bioRxiv. 2025; .

PMID: 39829748 PMC: 11741284. DOI: 10.1101/2025.01.06.631536.


References
1.
Barrangou R, Horvath P . A decade of discovery: CRISPR functions and applications. Nat Microbiol. 2017; 2:17092. DOI: 10.1038/nmicrobiol.2017.92. View

2.
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X . The crystal structure of Cpf1 in complex with CRISPR RNA. Nature. 2016; 532(7600):522-6. DOI: 10.1038/nature17944. View

3.
Harrington L, Burstein D, Chen J, Paez-Espino D, Ma E, Witte I . Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018; 362(6416):839-842. PMC: 6659742. DOI: 10.1126/science.aav4294. View

4.
Klompe S, Sternberg S . Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J. 2019; 1(2):141-158. PMC: 6636882. DOI: 10.1089/crispr.2018.0012. View

5.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S . CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315(5819):1709-12. DOI: 10.1126/science.1138140. View