» Articles » PMID: 32341350

Aging-regulated Anti-apoptotic Long Non-coding RNA Sarrah Augments Recovery from Acute Myocardial Infarction

Abstract

Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.

Citing Articles

Systematic study of hybrid triplex topology and stability suggests a general triplex-mediated regulatory mechanism.

Genna V, Portella G, Sala A, Terrazas M, Serrano-Chacon I, Gonzalez J Nucleic Acids Res. 2025; 53(5).

PMID: 40071936 PMC: 11897885. DOI: 10.1093/nar/gkaf170.


Identification and validation of key genes associated with cell senescence in acute myocardial infarction.

Zhao W, Zhu G, Chu T, Wu L, Li H, Zhen Q Front Cardiovasc Med. 2025; 12:1499157.

PMID: 40046960 PMC: 11880263. DOI: 10.3389/fcvm.2025.1499157.


The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review.

Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L Noncoding RNA Res. 2025; 11:158-187.

PMID: 39896344 PMC: 11783329. DOI: 10.1016/j.ncrna.2024.12.009.


Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of myocardial infarction.

Zolfaghari Dehkharghani M, Mousavi S, Kianifard N, Fazlzadeh A, Parsa H, Tavakoli Pirzaman A Int J Cardiol Heart Vasc. 2024; 55:101529.

PMID: 39498345 PMC: 11532444. DOI: 10.1016/j.ijcha.2024.101529.


Cardiac Aging in the Multi-Omics Era: High-Throughput Sequencing Insights.

Song Y, Spurlock B, Liu J, Qian L Cells. 2024; 13(20.

PMID: 39451201 PMC: 11506570. DOI: 10.3390/cells13201683.


References
1.
Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A . The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013; 24(2):206-14. PMC: 4149175. DOI: 10.1016/j.devcel.2012.12.012. View

2.
Hirt M, Sorensen N, Bartholdt L, Boeddinghaus J, Schaaf S, Eder A . Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Res Cardiol. 2012; 107(6):307. PMC: 3505530. DOI: 10.1007/s00395-012-0307-z. View

3.
Michalik K, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T . Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014; 114(9):1389-97. DOI: 10.1161/CIRCRESAHA.114.303265. View

4.
Doddaballapur A, Michalik K, Manavski Y, Lucas T, Houtkooper R, You X . Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol. 2014; 35(1):137-45. DOI: 10.1161/ATVBAHA.114.304277. View

5.
Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey O . A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Rep. 2016; 17(4):1193-1205. PMC: 5081405. DOI: 10.1016/j.celrep.2016.09.079. View