» Articles » PMID: 32094924

TMEM30A Loss-of-function Mutations Drive Lymphomagenesis and Confer Therapeutically Exploitable Vulnerability in B-cell Lymphoma

Abstract

Transmembrane protein 30A (TMEM30A) maintains the asymmetric distribution of phosphatidylserine, an integral component of the cell membrane and 'eat-me' signal recognized by macrophages. Integrative genomic and transcriptomic analysis of diffuse large B-cell lymphoma (DLBCL) from the British Columbia population-based registry uncovered recurrent biallelic TMEM30A loss-of-function mutations, which were associated with a favorable outcome and uniquely observed in DLBCL. Using TMEM30A-knockout systems, increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell lines and TMEM30A-mutated primary cells, explaining the improved treatment outcome. Furthermore, we found increased tumor-associated macrophages and an enhanced effect of anti-CD47 blockade limiting tumor growth in TMEM30A-knockout models. By contrast, we show that TMEM30A loss-of-function increases B-cell signaling following antigen stimulation-a mechanism conferring selective advantage during B-cell lymphoma development. Our data highlight a multifaceted role for TMEM30A in B-cell lymphomagenesis, and characterize intrinsic and extrinsic vulnerabilities of cancer cells that can be therapeutically exploited.

Citing Articles

Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer.

Pulica R, Aquib A, Varsanyi C, Gadiyar V, Wang Z, Frederick T Cell Commun Signal. 2025; 23(1):131.

PMID: 40069722 PMC: 11900106. DOI: 10.1186/s12964-025-02090-6.


Recent advances in understanding of pathogenesis and treatment development for diffuse large B-cell lymphoma and follicular lymphoma.

Ennishi D Int J Hematol. 2025; 121(3):318-320.

PMID: 39928216 DOI: 10.1007/s12185-025-03939-9.


Substrates, regulation, cellular functions, and disease associations of P4-ATPases.

Shin H, Takatsu H Commun Biol. 2025; 8(1):135.

PMID: 39875509 PMC: 11775268. DOI: 10.1038/s42003-025-07549-3.


Overexpression of PLCG2 and TMEM38A inhibit tumor progression in clear cell renal cell carcinoma.

Zhao Y, Yang L, Bai X, Du L, Lai H, Liu Y Sci Rep. 2025; 15(1):3192.

PMID: 39863641 PMC: 11763014. DOI: 10.1038/s41598-025-86644-1.


EZB-type diffuse large B-cell lymphoma cell lines have superior migration capabilities compared to MCD-type.

Sherif M, Schafer H, Scharf S, van Oostendorp V, Sadeghi Shoreh Deli A, Loth A Br J Haematol. 2024; 205(6):2327-2337.

PMID: 39355919 PMC: 11637725. DOI: 10.1111/bjh.19778.


References
1.
Swerdlow S, Campo E, Pileri S, Lee Harris N, Stein H, Siebert R . The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127(20):2375-90. PMC: 4874220. DOI: 10.1182/blood-2016-01-643569. View

2.
Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R . CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002; 346(4):235-42. DOI: 10.1056/NEJMoa011795. View

3.
Sehn L, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R . Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol. 2005; 23(22):5027-33. DOI: 10.1200/JCO.2005.09.137. View

4.
Alizadeh A, Eisen M, Davis R, Ma C, Lossos I, Rosenwald A . Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000; 403(6769):503-11. DOI: 10.1038/35000501. View

5.
Rosenwald A, Wright G, Chan W, Connors J, Campo E, Fisher R . The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002; 346(25):1937-47. DOI: 10.1056/NEJMoa012914. View