» Articles » PMID: 26436532

Systematic Analysis of Somatic Mutations Impacting Gene Expression in 12 Tumour Types

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Oct 6
PMID 26436532
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer.

Citing Articles

Mutation impact on mRNA versus protein expression across human cancers.

Liu Y, Elmas A, Huang K Gigascience. 2025; 14.

PMID: 39775839 PMC: 11702362. DOI: 10.1093/gigascience/giae113.


Low-level brain somatic mutations in exonic regions are collectively implicated in autism with germline mutations in autism risk genes.

Kim I, Kim M, Jung S, Kim W, Lee J, Ju Y Exp Mol Med. 2024; 56(8):1750-1762.

PMID: 39085355 PMC: 11372092. DOI: 10.1038/s12276-024-01284-1.


Single-cell decoding of drug induced transcriptomic reprogramming in triple negative breast cancers.

Kabeer F, Tran H, Andronescu M, Singh G, Lee H, Salehi S Genome Biol. 2024; 25(1):191.

PMID: 39026273 PMC: 11256464. DOI: 10.1186/s13059-024-03318-3.


Allele-specific transcriptional effects of subclonal copy number alterations enable genotype-phenotype mapping in cancer cells.

Shi H, Williams M, Satas G, Weiner A, McPherson A, Shah S Nat Commun. 2024; 15(1):2482.

PMID: 38509111 PMC: 10954741. DOI: 10.1038/s41467-024-46710-0.


The effects of mutations on gene expression and alternative splicing.

Snyman M, Xu S Proc Biol Sci. 2023; 290(2002):20230565.

PMID: 37403507 PMC: 10320348. DOI: 10.1098/rspb.2023.0565.


References
1.
Wynes M, Hinz T, Gao D, Martini M, Marek L, Ware K . FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies. Clin Cancer Res. 2014; 20(12):3299-309. PMC: 4062100. DOI: 10.1158/1078-0432.CCR-13-3060. View

2.
Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D . Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012; 483(7387):100-3. DOI: 10.1038/nature10868. View

3.
Davoli T, Xu A, Mengwasser K, Sack L, Yoon J, Park P . Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013; 155(4):948-62. PMC: 3891052. DOI: 10.1016/j.cell.2013.10.011. View

4.
Raphael B, Dobson J, Oesper L, Vandin F . Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 2014; 6(1):5. PMC: 3978567. DOI: 10.1186/gm524. View

5.
Gerstein M, Kundaje A, Hariharan M, Landt S, Yan K, Cheng C . Architecture of the human regulatory network derived from ENCODE data. Nature. 2012; 489(7414):91-100. PMC: 4154057. DOI: 10.1038/nature11245. View