6.
Schmidt C, Hocherl K, Schweda F, Kurtz A, Bucher M
. Regulation of renal sodium transporters during severe inflammation. J Am Soc Nephrol. 2007; 18(4):1072-83.
DOI: 10.1681/ASN.2006050454.
View
7.
Vallon V
. Tubular Transport in Acute Kidney Injury: Relevance for Diagnosis, Prognosis and Intervention. Nephron. 2016; 134(3):160-166.
PMC: 5089910.
DOI: 10.1159/000446448.
View
8.
Vallon V
. Glucose transporters in the kidney in health and disease. Pflugers Arch. 2020; 472(9):1345-1370.
PMC: 7483786.
DOI: 10.1007/s00424-020-02361-w.
View
9.
Vallon V, Thomson S
. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol. 2012; 74:351-75.
PMC: 3807782.
DOI: 10.1146/annurev-physiol-020911-153333.
View
10.
Vallon V, Thomson S
. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020; 16(6):317-336.
PMC: 7242158.
DOI: 10.1038/s41581-020-0256-y.
View
11.
Zapata-Morales J, Galicia-Cruz O, Franco M, Martinez Y Morales F
. Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J Biol Chem. 2013; 289(1):346-57.
PMC: 3879557.
DOI: 10.1074/jbc.M113.526814.
View
12.
Bai L, You Q, Jain B, Duan H, Kovach A, Graham T
. Transport mechanism of P4 ATPase phosphatidylcholine flippases. Elife. 2020; 9.
PMC: 7773333.
DOI: 10.7554/eLife.62163.
View
13.
Best J, Xu P, Graham T
. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Curr Opin Cell Biol. 2019; 59:8-15.
PMC: 6726550.
DOI: 10.1016/j.ceb.2019.02.004.
View
14.
van der Mark V, Oude Elferink R, Paulusma C
. P4 ATPases: flippases in health and disease. Int J Mol Sci. 2013; 14(4):7897-922.
PMC: 3645723.
DOI: 10.3390/ijms14047897.
View
15.
Lopez-Marques R, Theorin L, Palmgren M, Pomorski T
. P4-ATPases: lipid flippases in cell membranes. Pflugers Arch. 2013; 466(7):1227-40.
PMC: 4062807.
DOI: 10.1007/s00424-013-1363-4.
View
16.
Sebastian T, Baldridge R, Xu P, Graham T
. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta. 2012; 1821(8):1068-77.
PMC: 3368091.
DOI: 10.1016/j.bbalip.2011.12.007.
View
17.
Dhar M, Sommardahl C, Kirkland T, Nelson S, Donnell R, Johnson D
. Mice heterozygous for Atp10c, a putative amphipath, represent a novel model of obesity and type 2 diabetes. J Nutr. 2004; 134(4):799-805.
DOI: 10.1093/jn/134.4.799.
View
18.
Liu K, Surendhran K, Nothwehr S, Graham T
. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell. 2008; 19(8):3526-35.
PMC: 2488278.
DOI: 10.1091/mbc.e08-01-0025.
View
19.
Bryde S, Hennrich H, Verhulst P, Devaux P, Lenoir G, Holthuis J
. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J Biol Chem. 2010; 285(52):40562-72.
PMC: 3003355.
DOI: 10.1074/jbc.M110.139543.
View
20.
Folmer D, Mok K, de Wee S, Duijst S, Hiralall J, Seppen J
. Cellular localization and biochemical analysis of mammalian CDC50A, a glycosylated β-subunit for P4 ATPases. J Histochem Cytochem. 2012; 60(3):205-18.
PMC: 3351125.
DOI: 10.1369/0022155411435705.
View