» Articles » PMID: 31825311

Diversification of the Heat Shock Response by Helitron Transposable Elements

Overview
Journal Elife
Specialty Biology
Date 2019 Dec 12
PMID 31825311
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in . Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in and and by strain-specific insertions among different wild isolates of . Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the HSR.

Citing Articles

Time-course transcriptome analysis reveals gene co-expression networks and transposable element responses to cold stress in cotton.

Dai Y, Zhou J, Zhang B, Zheng D, Wang K, Han J BMC Genomics. 2025; 26(1):235.

PMID: 40075303 PMC: 11900653. DOI: 10.1186/s12864-025-11433-z.


High-quality chromosome-level genome assembly of female reveals sex chromosome and gene organization.

Jo E, Cho M, Choi S, Lee S, Choi E, Kim J Heliyon. 2024; 10(19):e38687.

PMID: 39435060 PMC: 11492255. DOI: 10.1016/j.heliyon.2024.e38687.


Discovery of numerous novel Helitron-like elements in eukaryote genomes using HELIANO.

Li Z, Gilbert C, Peng H, Pollet N Nucleic Acids Res. 2024; 52(17):e79.

PMID: 39119924 PMC: 11417382. DOI: 10.1093/nar/gkae679.


Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling.

Muhammad T, Li J Biochem Soc Trans. 2023; 51(2):501-512.

PMID: 36892215 PMC: 10355142. DOI: 10.1042/BST20220616.


Widespread transposon co-option in the germline regulatory network.

Carelli F, Cerrato C, Dong Y, Appert A, Dernburg A, Ahringer J Sci Adv. 2022; 8(50):eabo4082.

PMID: 36525485 PMC: 9757741. DOI: 10.1126/sciadv.abo4082.


References
1.
Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J . An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011; 472(7341):115-9. DOI: 10.1038/nature09861. View

2.
Narasimhan K, Lambert S, Yang A, Riddell J, Mnaimneh S, Zheng H . Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. Elife. 2015; 4. PMC: 4434323. DOI: 10.7554/eLife.06967. View

3.
Shirayama M, Seth M, Lee H, Gu W, Ishidate T, Conte Jr D . piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell. 2012; 150(1):65-77. PMC: 3597741. DOI: 10.1016/j.cell.2012.06.015. View

4.
Rausch T, Zichner T, Schlattl A, Stutz A, Benes V, Korbel J . DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012; 28(18):i333-i339. PMC: 3436805. DOI: 10.1093/bioinformatics/bts378. View

5.
Gonsalves S, Moses A, Razak Z, Robert F, Westwood J . Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS One. 2011; 6(1):e15934. PMC: 3021535. DOI: 10.1371/journal.pone.0015934. View