» Articles » PMID: 34403695

The Large Bat Helitron DNA Transposase Forms a Compact Monomeric Assembly That Buries and Protects Its Covalently Bound 5'-transposon End

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2021 Aug 17
PMID 34403695
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.

Citing Articles

Extensive longevity and DNA virus-driven adaptation in nearctic bats.

Vazquez J, Lauterbur M, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G bioRxiv. 2024; .

PMID: 39416019 PMC: 11482938. DOI: 10.1101/2024.10.10.617725.


Discovery of numerous novel Helitron-like elements in eukaryote genomes using HELIANO.

Li Z, Gilbert C, Peng H, Pollet N Nucleic Acids Res. 2024; 52(17):e79.

PMID: 39119924 PMC: 11417382. DOI: 10.1093/nar/gkae679.


HiTE: a fast and accurate dynamic boundary adjustment approach for full-length transposable element detection and annotation.

Hu K, Ni P, Xu M, Zou Y, Chang J, Gao X Nat Commun. 2024; 15(1):5573.

PMID: 38956036 PMC: 11219922. DOI: 10.1038/s41467-024-49912-8.


From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution.

Chakrabarty P, Sen R, Sengupta S Funct Integr Genomics. 2023; 23(3):278.

PMID: 37610667 DOI: 10.1007/s10142-023-01206-w.


Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein.

Butkovic A, Kraberger S, Smeele Z, Martin D, Schmidlin K, Fontenele R Virus Evol. 2023; 9(1):vead035.

PMID: 37325085 PMC: 10266747. DOI: 10.1093/ve/vead035.


References
1.
Biemont C, Vieira C . Genetics: junk DNA as an evolutionary force. Nature. 2006; 443(7111):521-4. DOI: 10.1038/443521a. View

2.
Mendiola M, de la Cruz F . IS91 transposase is related to the rolling-circle-type replication proteins of the pUB110 family of plasmids. Nucleic Acids Res. 1992; 20(13):3521. PMC: 312521. DOI: 10.1093/nar/20.13.3521. View

3.
Chandler M, de la Cruz F, Dyda F, Hickman A, Moncalian G, Ton-Hoang B . Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol. 2013; 11(8):525-38. PMC: 6493337. DOI: 10.1038/nrmicro3067. View

4.
Koonin E, Ilyina T . Computer-assisted dissection of rolling circle DNA replication. Biosystems. 1993; 30(1-3):241-68. DOI: 10.1016/0303-2647(93)90074-m. View

5.
Pritham E, Feschotte C . Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci U S A. 2007; 104(6):1895-900. PMC: 1794268. DOI: 10.1073/pnas.0609601104. View