» Articles » PMID: 31483066

Residual Apoptotic Activity of a Tumorigenic P53 Mutant Improves Cancer Therapy Responses

Abstract

Engineered p53 mutant mice are valuable tools for delineating p53 functions in tumor suppression and cancer therapy. Here, we have introduced the R178E mutation into the Trp53 gene of mice to specifically ablate the cooperative nature of p53 DNA binding. Trp53 mice show no detectable target gene regulation and, at first sight, are largely indistinguishable from Trp53 mice. Surprisingly, stabilization of p53 in Mdm2 mice nevertheless triggers extensive apoptosis, indicative of residual wild-type activities. Although this apoptotic activity suffices to trigger lethality of Trp53 ;Mdm2 embryos, it proves insufficient for suppression of spontaneous and oncogene-driven tumorigenesis. Trp53 mice develop tumors indistinguishably from Trp53 mice and tumors retain and even stabilize the p53 protein, further attesting to the lack of significant tumor suppressor activity. However, Trp53 tumors exhibit remarkably better chemotherapy responses than Trp53 ones, resulting in enhanced eradication of p53-mutated tumor cells. Together, this provides genetic proof-of-principle evidence that a p53 mutant can be highly tumorigenic and yet retain apoptotic activity which provides a survival benefit in the context of cancer therapy.

Citing Articles

ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework.

Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M NPJ Precis Oncol. 2024; 8(1):70.

PMID: 38485987 PMC: 10940698. DOI: 10.1038/s41698-024-00554-5.


Li-Fraumeni Syndrome-Associated Dimer-Forming Mutant p53 Promotes Transactivation-Independent Mitochondrial Cell Death.

Choe J, Kawase T, Xu A, Guzman A, Obradovic A, Low-Calle A Cancer Discov. 2023; 13(5):1250-1273.

PMID: 37067901 PMC: 10287063. DOI: 10.1158/2159-8290.CD-22-0882.


BAG2 drives chemoresistance of breast cancer by exacerbating mutant p53 aggregate.

Huang X, Shi D, Zou X, Wu X, Huang S, Kong L Theranostics. 2023; 13(1):339-354.

PMID: 36593950 PMC: 9800719. DOI: 10.7150/thno.78492.


Recent findings on the role of wild-type and mutant p53 in cancer development and therapy.

Babamohamadi M, Babaei E, Ahmed Salih B, Babamohammadi M, Jalal Azeez H, Othman G Front Mol Biosci. 2022; 9:903075.

PMID: 36225257 PMC: 9549909. DOI: 10.3389/fmolb.2022.903075.


Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase.

Merle N, Elmshauser S, Strassheimer F, Wanzel M, Konig A, Funk J Mol Cancer. 2022; 21(1):191.

PMID: 36192757 PMC: 9531476. DOI: 10.1186/s12943-022-01661-2.


References
1.
Kitayner M, Rozenberg H, Rohs R, Suad O, Rabinovich D, Honig B . Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat Struct Mol Biol. 2010; 17(4):423-9. PMC: 3280089. DOI: 10.1038/nsmb.1800. View

2.
Machanick P, Bailey T . MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27(12):1696-7. PMC: 3106185. DOI: 10.1093/bioinformatics/btr189. View

3.
Mathelier A, Zhao X, Zhang A, Parcy F, Worsley-Hunt R, Arenillas D . JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2013; 42(Database issue):D142-7. PMC: 3965086. DOI: 10.1093/nar/gkt997. View

4.
Ludwig R, Bates S, Vousden K . Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol. 1996; 16(9):4952-60. PMC: 231497. DOI: 10.1128/MCB.16.9.4952. View

5.
West R, Nuyten D, Subramanian S, Nielsen T, Corless C, Rubin B . Determination of stromal signatures in breast carcinoma. PLoS Biol. 2005; 3(6):e187. PMC: 1088973. DOI: 10.1371/journal.pbio.0030187. View