» Articles » PMID: 33230179

Comprehensive Assessment of TP53 Loss of Function Using Multiple Combinatorial Mutagenesis Libraries

Overview
Journal Sci Rep
Specialty Science
Date 2020 Nov 24
PMID 33230179
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The diagnosis of somatic and germline TP53 mutations in human tumors or in individuals prone to various types of cancer has now reached the clinic. To increase the accuracy of the prediction of TP53 variant pathogenicity, we gathered functional data from three independent large-scale saturation mutagenesis screening studies with experimental data for more than 10,000 TP53 variants performed in different settings (yeast or mammalian) and with different readouts (transcription, growth arrest or apoptosis). Correlation analysis and multidimensional scaling showed excellent agreement between all these variables. Furthermore, we found that some missense mutations localized in TP53 exons led to impaired TP53 splicing as shown by an analysis of the TP53 expression data from the cancer genome atlas. With the increasing availability of genomic, transcriptomic and proteomic data, it is essential to employ both protein and RNA prediction to accurately define variant pathogenicity.

Citing Articles

Mis-splicing drives loss of function of p53E224D point mutation.

Lock I, Leisenring N, Floyd W, Xu E, Luo L, Ma Y PLoS One. 2025; 20(3):e0318856.

PMID: 40043089 PMC: 11882087. DOI: 10.1371/journal.pone.0318856.


Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations.

Funk J, Klimovich M, Drangenstein D, Pielhoop O, Hunold P, Borowek A Nat Genet. 2025; 57(1):140-153.

PMID: 39774325 PMC: 11735402. DOI: 10.1038/s41588-024-02039-4.


TP53: the unluckiest of genes?.

Joerger A, Stiewe T, Soussi T Cell Death Differ. 2024; 32(2):219-224.

PMID: 39443700 PMC: 11803090. DOI: 10.1038/s41418-024-01391-6.


Cancer associated variant enrichment CAVE, a gene agnostic approach to identify low burden variants in chronic lymphocytic leukemia.

Yaacov A, Lazarian G, Pandzic T, Westrom S, Baliakas P, Imache S Sci Rep. 2024; 14(1):21962.

PMID: 39304718 PMC: 11415367. DOI: 10.1038/s41598-024-73027-1.


Germline p.R181H variant in TP53 in a family exemplifying the genotype-phenotype correlations in Li-Fraumeni syndrome.

Freycon C, Palma L, Budd C, Coulombe F, Witkowski L, Hainaut P Fam Cancer. 2024; 23(4):665-669.

PMID: 39261343 DOI: 10.1007/s10689-024-00419-7.


References
1.
Donehower L, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M . Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep. 2019; 28(5):1370-1384.e5. PMC: 7546539. DOI: 10.1016/j.celrep.2019.07.001. View

2.
Bonnal S, Lopez-Oreja I, Valcarcel J . Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol. 2020; 17(8):457-474. DOI: 10.1038/s41571-020-0350-x. View

3.
Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B . Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci U S A. 2012; 109(24):9551-6. PMC: 3386058. DOI: 10.1073/pnas.1200019109. View

4.
Leroy B, Ballinger M, Baran-Marszak F, Bond G, Braithwaite A, Concin N . Recommended Guidelines for Validation, Quality Control, and Reporting of Variants in Clinical Practice. Cancer Res. 2017; 77(6):1250-1260. PMC: 7457206. DOI: 10.1158/0008-5472.CAN-16-2179. View

5.
Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B . Synonymous mutations frequently act as driver mutations in human cancers. Cell. 2014; 156(6):1324-1335. DOI: 10.1016/j.cell.2014.01.051. View