» Articles » PMID: 31281901

CATACOMB: An Endogenous Inducible Gene That Antagonizes H3K27 Methylation Activity of Polycomb Repressive Complex 2 Via an H3K27M-like Mechanism

Abstract

Using biochemical characterization of fusion proteins associated with endometrial stromal sarcoma, we identified JAZF1 as a new subunit of the NuA4 acetyltransferase complex and CXORF67 as a subunit of the Polycomb Repressive Complex 2 (PRC2). Since CXORF67's interaction with PRC2 leads to decreased PRC2-dependent H3K27me2/3 deposition, we propose a new name for this gene: (catalytic antagonist of Polycomb; official gene name: ). We map inhibitory function to a short highly conserved region and identify a single methionine residue essential for diminution of H3K27me2/3 levels. Remarkably, the amino acid sequence surrounding this critical methionine resembles the oncogenic histone H3 Lys-to-methionine (H3K27M) mutation found in high-grade pediatric gliomas. As expression is regulated through DNA methylation/demethylation, we propose as the potential interlocutor between DNA methylation and PRC2 activity. We raise the possibility that similar regulatory mechanisms could exist for other methyltransferase complexes such as Trithorax/COMPASS.

Citing Articles

Functional innovation through new genes as a general evolutionary process.

Xia S, Chen J, Arsala D, Emerson J, Long M Nat Genet. 2025; 57(2):295-309.

PMID: 39875578 DOI: 10.1038/s41588-024-02059-0.


DNA methylation shapes the Polycomb landscape during the exit from naive pluripotency.

Richard Albert J, Urli T, Monteagudo-Sanchez A, Le Breton A, Sultanova A, David A Nat Struct Mol Biol. 2024; 32(2):346-357.

PMID: 39448850 DOI: 10.1038/s41594-024-01405-4.


Epigenetic reprogramming in pediatric gliomas: from molecular mechanisms to therapeutic implications.

Haase S, Carney S, Varela M, Mukherji D, Zhu Z, Li Y Trends Cancer. 2024; 10(12):1147-1160.

PMID: 39394009 PMC: 11631670. DOI: 10.1016/j.trecan.2024.09.007.


Functional Classification of Fusion Proteins in Sarcoma.

Wachtel M, Surdez D, Grunewald T, Schafer B Cancers (Basel). 2024; 16(7).

PMID: 38611033 PMC: 11010897. DOI: 10.3390/cancers16071355.


Crosstalk within and beyond the Polycomb repressive system.

Shi T, Sugishita H, Gotoh Y J Cell Biol. 2024; 223(5).

PMID: 38506728 PMC: 10955045. DOI: 10.1083/jcb.202311021.


References
1.
Easwaran H, Johnstone S, Van Neste L, Ohm J, Mosbruger T, Wang Q . A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 2012; 22(5):837-49. PMC: 3337430. DOI: 10.1101/gr.131169.111. View

2.
Riising E, Comet I, LeBlanc B, Wu X, Johansen J, Helin K . Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell. 2014; 55(3):347-60. DOI: 10.1016/j.molcel.2014.06.005. View

3.
Pajtler K, Wen J, Sill M, Lin T, Orisme W, Tang B . Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 2018; 136(2):211-226. PMC: 6105278. DOI: 10.1007/s00401-018-1877-0. View

4.
Wang X, Paucek R, Gooding A, Brown Z, Ge E, Muir T . Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat Struct Mol Biol. 2017; 24(12):1028-1038. PMC: 5771497. DOI: 10.1038/nsmb.3487. View

5.
Hickox A, Wong A, Pak K, Strojny C, Ramirez M, Yates 3rd J . Global Analysis of Protein Expression of Inner Ear Hair Cells. J Neurosci. 2017; 37(5):1320-1339. PMC: 5296798. DOI: 10.1523/JNEUROSCI.2267-16.2016. View