» Articles » PMID: 31061482

Efficient Integration of Heterogeneous Single-cell Transcriptomes Using Scanorama

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2019 May 8
PMID 31061482
Citations 354
Authors
Affiliations
Soon will be listed here.
Abstract

Integration of single-cell RNA sequencing (scRNA-seq) data from multiple experiments, laboratories and technologies can uncover biological insights, but current methods for scRNA-seq data integration are limited by a requirement for datasets to derive from functionally similar cells. We present Scanorama, an algorithm that identifies and merges the shared cell types among all pairs of datasets and accurately integrates heterogeneous collections of scRNA-seq data. We applied Scanorama to integrate and remove batch effects across 105,476 cells from 26 diverse scRNA-seq experiments representing 9 different technologies. Scanorama is sensitive to subtle temporal changes within the same cell lineage, successfully integrating functionally similar cells across time series data of CD14 monocytes at different stages of differentiation into macrophages. Finally, we show that Scanorama is orders of magnitude faster than existing techniques and can integrate a collection of 1,095,538 cells in just ~9 h.

Citing Articles

Scaling up spatial transcriptomics for large-sized tissues: uncovering cellular-level tissue architecture beyond conventional platforms with iSCALE.

Schroeder A, Loth M, Luo C, Yao S, Yan H, Zhang D bioRxiv. 2025; .

PMID: 40060412 PMC: 11888418. DOI: 10.1101/2025.02.25.640190.


Seurat function argument values in scRNA-seq data analysis: potential pitfalls and refinements for biological interpretation.

Arbatsky M, Vasilyeva E, Sysoeva V, Semina E, Saveliev V, Rubina K Front Bioinform. 2025; 5:1519468.

PMID: 40013100 PMC: 11861183. DOI: 10.3389/fbinf.2025.1519468.


scCobra allows contrastive cell embedding learning with domain adaptation for single cell data integration and harmonization.

Zhao B, Song K, Wei D, Xiong Y, Ding J Commun Biol. 2025; 8(1):233.

PMID: 39948393 PMC: 11825689. DOI: 10.1038/s42003-025-07692-x.


Leveraging prior knowledge to infer gene regulatory networks from single-cell RNA-sequencing data.

Stock M, Losert C, Zambon M, Popp N, Lubatti G, Hormanseder E Mol Syst Biol. 2025; 21(3):214-230.

PMID: 39939367 PMC: 11876610. DOI: 10.1038/s44320-025-00088-3.


Spatial integration of multi-omics single-cell data with SIMO.

Yang P, Jin K, Yao Y, Jin L, Shao X, Li C Nat Commun. 2025; 16(1):1265.

PMID: 39893194 PMC: 11787318. DOI: 10.1038/s41467-025-56523-4.


References
1.
Zappia L, Phipson B, Oshlack A . Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017; 18(1):174. PMC: 5596896. DOI: 10.1186/s13059-017-1305-0. View

2.
Baron M, Veres A, Wolock S, Faust A, Gaujoux R, Vetere A . A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst. 2016; 3(4):346-360.e4. PMC: 5228327. DOI: 10.1016/j.cels.2016.08.011. View

3.
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner H . Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017; 14(10):979-982. PMC: 5764547. DOI: 10.1038/nmeth.4402. View

4.
Kiselev V, Yiu A, Hemberg M . scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018; 15(5):359-362. DOI: 10.1038/nmeth.4644. View

5.
Ronen J, Akalin A . netSmooth: Network-smoothing based imputation for single cell RNA-seq. F1000Res. 2018; 7:8. PMC: 5814748. DOI: 10.12688/f1000research.13511.3. View