6.
Haase S, Linker R
. Inflammation in multiple sclerosis. Ther Adv Neurol Disord. 2021; 14:17562864211007687.
PMC: 8053832.
DOI: 10.1177/17562864211007687.
View
7.
Moffitt J, Bambah-Mukku D, Eichhorn S, Vaughn E, Shekhar K, Perez J
. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science. 2018; 362(6416).
PMC: 6482113.
DOI: 10.1126/science.aau5324.
View
8.
Janesick A, Shelansky R, Gottscho A, Wagner F, Williams S, Rouault M
. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat Commun. 2023; 14(1):8353.
PMC: 10730913.
DOI: 10.1038/s41467-023-43458-x.
View
9.
Lakkis J, Wang D, Zhang Y, Hu G, Wang K, Pan H
. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Genome Res. 2021; 31(10):1753-1766.
PMC: 8494213.
DOI: 10.1101/gr.271874.120.
View
10.
Pernot S, Voron T, Perkins G, Lagorce-Pages C, Berger A, Taieb J
. Signet-ring cell carcinoma of the stomach: Impact on prognosis and specific therapeutic challenge. World J Gastroenterol. 2015; 21(40):11428-38.
PMC: 4616218.
DOI: 10.3748/wjg.v21.i40.11428.
View
11.
Hu J, Coleman K, Zhang D, Lee E, Kadara H, Wang L
. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA. Cell Syst. 2023; 14(5):404-417.e4.
PMC: 10246692.
DOI: 10.1016/j.cels.2023.03.008.
View
12.
He B, Bergenstrahle L, Stenbeck L, Abid A, Andersson A, Borg A
. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng. 2020; 4(8):827-834.
DOI: 10.1038/s41551-020-0578-x.
View
13.
Larsson L, Frisen J, Lundeberg J
. Spatially resolved transcriptomics adds a new dimension to genomics. Nat Methods. 2021; 18(1):15-18.
DOI: 10.1038/s41592-020-01038-7.
View
14.
He S, Bhatt R, Brown C, Brown E, Buhr D, Chantranuvatana K
. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat Biotechnol. 2022; 40(12):1794-1806.
DOI: 10.1038/s41587-022-01483-z.
View
15.
Liu Y, Yang M, Deng Y, Su G, Enninful A, Guo C
. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. Cell. 2020; 183(6):1665-1681.e18.
PMC: 7736559.
DOI: 10.1016/j.cell.2020.10.026.
View
16.
Peterson J, Bo L, Mork S, Chang A, Trapp B
. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001; 50(3):389-400.
DOI: 10.1002/ana.1123.
View
17.
Dobson R, Giovannoni G
. Multiple sclerosis - a review. Eur J Neurol. 2018; 26(1):27-40.
DOI: 10.1111/ene.13819.
View
18.
Stahl P, Salmen F, Vickovic S, Lundmark A, Fernandez Navarro J, Magnusson J
. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353(6294):78-82.
DOI: 10.1126/science.aaf2403.
View
19.
Jia Y, Liu J, Chen L, Zhao T, Wang Y
. THItoGene: a deep learning method for predicting spatial transcriptomics from histological images. Brief Bioinform. 2023; 25(1).
PMC: 10749789.
DOI: 10.1093/bib/bbad464.
View
20.
Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C
. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363(6434):1463-1467.
PMC: 6927209.
DOI: 10.1126/science.aaw1219.
View