» Articles » PMID: 29511531

NetSmooth: Network-smoothing Based Imputation for Single Cell RNA-seq

Overview
Journal F1000Res
Date 2018 Jul 20
PMID 29511531
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Single cell RNA-seq (scRNA-seq) experiments suffer from a range of characteristic technical biases, such as dropouts (zero or near zero counts) and high variance. Current analysis methods rely on imputing missing values by various means of local averaging or regression, often amplifying biases inherent in the data. We present netSmooth, a network-diffusion based method that uses priors for the covariance structure of gene expression profiles on scRNA-seq experiments in order to smooth expression values. We demonstrate that netSmooth improves clustering results of scRNA-seq experiments from distinct cell populations, time-course experiments, and cancer genomics. We provide an R package for our method, available at: https://github.com/BIMSBbioinfo/netSmooth.

Citing Articles

The combined use of scRNA-seq and network propagation highlights key features of pan-cancer Tumor-Infiltrating T cells.

Mangelinck A, Molitor E, Marchiq I, Alaoui L, Bouaziz M, Andrade-Pereira R PLoS One. 2024; 19(12):e0315980.

PMID: 39729479 PMC: 11676858. DOI: 10.1371/journal.pone.0315980.


Single-cell gene set scoring with nearest neighbor graph smoothed data (gssnng).

Gibbs D, Strasser M, Huang S Bioinform Adv. 2023; 3(1):vbad150.

PMID: 37886712 PMC: 10599965. DOI: 10.1093/bioadv/vbad150.


Single cell and bulk transcriptome analysis identified oxidative stress response-related features of Hepatocellular Carcinoma.

Zhang S, Li X, Zheng Y, Liu J, Hu H, Zhang S Front Cell Dev Biol. 2023; 11:1191074.

PMID: 37842089 PMC: 10568628. DOI: 10.3389/fcell.2023.1191074.


DeepCCI: a deep learning framework for identifying cell-cell interactions from single-cell RNA sequencing data.

Yang W, Wang P, Luo M, Cai Y, Xu C, Xue G Bioinformatics. 2023; 39(10).

PMID: 37740953 PMC: 10558043. DOI: 10.1093/bioinformatics/btad596.


Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.

Brendel M, Su C, Bai Z, Zhang H, Elemento O, Wang F Genomics Proteomics Bioinformatics. 2022; 20(5):814-835.

PMID: 36528240 PMC: 10025684. DOI: 10.1016/j.gpb.2022.11.011.


References
1.
Hofree M, Shen J, Carter H, Gross A, Ideker T . Network-based stratification of tumor mutations. Nat Methods. 2013; 10(11):1108-15. PMC: 3866081. DOI: 10.1038/nmeth.2651. View

2.
Edgar R, Domrachev M, Lash A . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2001; 30(1):207-10. PMC: 99122. DOI: 10.1093/nar/30.1.207. View

3.
Kharchenko P, Silberstein L, Scadden D . Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740-2. PMC: 4112276. DOI: 10.1038/nmeth.2967. View

4.
Patel A, Tirosh I, Trombetta J, Shalek A, Gillespie S, Wakimoto H . Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190):1396-401. PMC: 4123637. DOI: 10.1126/science.1254257. View

5.
Soneson C, Robinson M . Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018; 15(4):255-261. DOI: 10.1038/nmeth.4612. View