» Articles » PMID: 30753671

Loss of RNA-binding Protein GRSF1 Activates MTOR to Elicit a Proinflammatory Transcriptional Program

Overview
Specialty Biochemistry
Date 2019 Feb 13
PMID 30753671
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The RNA-binding protein GRSF1 (G-rich RNA sequence-binding factor 1) critically maintains mitochondrial homeostasis. Accordingly, loss of GRSF1 impaired mitochondrial respiration and increased the levels of reactive oxygen species (ROS), triggering DNA damage, growth suppression, and a senescent phenotype characterized by elevated production and secretion of interleukin (IL)6. Here, we characterize the pathways that govern IL6 production in response to mitochondrial dysfunction in GRSF1-depleted cells. We report that loss of GRSF1 broadly altered protein expression programs, impairing the function of respiratory complexes I and IV. The rise in oxidative stress led to increased DNA damage and activation of mTOR, which in turn activated NF-κB to induce IL6 gene transcription and orchestrate a pro-inflammatory program. Collectively, our results indicate that GRSF1 helps preserve mitochondrial homeostasis, in turn preventing oxidative DNA damage and the activation of mTOR and NF-κB, and suppressing a transcriptional pro-inflammatory program leading to increased IL6 production.

Citing Articles

Knockout Mouse Studies Show That Mitochondrial CLPP Peptidase and CLPX Unfoldase Act in Matrix Condensates near IMM, as Fast Stress Response in Protein Assemblies for Transcript Processing, Translation, and Heme Production.

Key J, Gispert S, Auburger G Genes (Basel). 2024; 15(6).

PMID: 38927630 PMC: 11202940. DOI: 10.3390/genes15060694.


Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production.

Bennett N, Lee M, Orr A, Nakamura K Proc Natl Acad Sci U S A. 2024; 121(3):e2307904121.

PMID: 38207075 PMC: 10801874. DOI: 10.1073/pnas.2307904121.


Understanding cellular senescence: pathways involved, therapeutics and longevity aiding.

Kumar A, Thirumurugan K Cell Cycle. 2023; 22(20):2324-2345.

PMID: 38031713 PMC: 10730163. DOI: 10.1080/15384101.2023.2287929.


GRSF1 antagonizes age-associated hypercoagulability via modulation of fibrinogen mRNA stability.

Liu D, Xu C, Gong Z, Zhao Y, Fang Z, Rao X Cell Death Dis. 2023; 14(11):717.

PMID: 37923734 PMC: 10624831. DOI: 10.1038/s41419-023-06242-9.


Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production.

Bennett N, Lee M, Orr A, Nakamura K bioRxiv. 2023; .

PMID: 37904938 PMC: 10614765. DOI: 10.1101/2023.10.14.562276.


References
1.
Jourdain A, Koppen M, Wydro M, Rodley C, Lightowlers R, Chrzanowska-Lightowlers Z . GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab. 2013; 17(3):399-410. PMC: 3593211. DOI: 10.1016/j.cmet.2013.02.005. View

2.
Anders H, Schaefer L . Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol. 2014; 25(7):1387-400. PMC: 4073442. DOI: 10.1681/ASN.2014010117. View

3.
Hirst J . Mitochondrial complex I. Annu Rev Biochem. 2013; 82:551-75. DOI: 10.1146/annurev-biochem-070511-103700. View

4.
Noh J, Kim K, Abdelmohsen K, Yoon J, Panda A, Munk R . HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev. 2016; 30(10):1224-39. PMC: 4888842. DOI: 10.1101/gad.276022.115. View

5.
Sun N, Youle R, Finkel T . The Mitochondrial Basis of Aging. Mol Cell. 2016; 61(5):654-666. PMC: 4779179. DOI: 10.1016/j.molcel.2016.01.028. View