» Articles » PMID: 30604898

MR-PET Head Motion Correction Based on Co-registration of Multicontrast MR Images

Overview
Journal Hum Brain Mapp
Publisher Wiley
Specialty Neurology
Date 2019 Jan 4
PMID 30604898
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Head motion is a major source of image artefacts in neuroimaging studies and can lead to degradation of the quantitative accuracy of reconstructed PET images. Simultaneous magnetic resonance-positron emission tomography (MR-PET) makes it possible to estimate head motion information from high-resolution MR images and then correct motion artefacts in PET images. In this article, we introduce a fully automated PET motion correction method, MR-guided MAF, based on the co-registration of multicontrast MR images. The performance of the MR-guided MAF method was evaluated using MR-PET data acquired from a cohort of ten healthy participants who received a slow infusion of fluorodeoxyglucose ([18-F]FDG). Compared with conventional methods, MR-guided PET image reconstruction can reduce head motion introduced artefacts and improve the image sharpness and quantitative accuracy of PET images acquired using simultaneous MR-PET scanners. The fully automated motion estimation method has been implemented as a publicly available web-service.

Citing Articles

Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs.

Yang J, Afaq A, Sibley R, McMilan A, Pirasteh A MAGMA. 2024; 37(4):749-763.

PMID: 39167304 DOI: 10.1007/s10334-024-01199-y.


Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges.

Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan G J Digit Imaging. 2022; 36(1):204-230.

PMID: 36323914 PMC: 9984670. DOI: 10.1007/s10278-022-00721-9.


Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum.

Sabaroedin K, Razi A, Chopra S, Tran N, Pozaruk A, Chen Z Brain. 2022; 146(1):372-386.

PMID: 35094052 PMC: 9825436. DOI: 10.1093/brain/awac018.


Task-evoked simultaneous FDG-PET and fMRI data for measurement of neural metabolism in the human visual cortex.

Jamadar S, Zhong S, Carey A, McIntyre R, Ward P, Fornito A Sci Data. 2021; 8(1):267.

PMID: 34654823 PMC: 8520012. DOI: 10.1038/s41597-021-01042-2.


Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging.

Polycarpou I, Soultanidis G, Tsoumpas C Philos Trans A Math Phys Eng Sci. 2021; 379(2204):20200207.

PMID: 34218675 PMC: 8255946. DOI: 10.1098/rsta.2020.0207.


References
1.
Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde D . MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2010; 52(1):154-61. PMC: 3125596. DOI: 10.2967/jnumed.110.079343. View

2.
Iida H, Hori Y, Ishida K, Imabayashi E, Matsuda H, Takahashi M . Three-dimensional brain phantom containing bone and grey matter structures with a realistic head contour. Ann Nucl Med. 2012; 27(1):25-36. PMC: 3549246. DOI: 10.1007/s12149-012-0655-7. View

3.
Andersson J, Skare S, Ashburner J . How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003; 20(2):870-88. DOI: 10.1016/S1053-8119(03)00336-7. View

4.
Ullisch M, Scheins J, Weirich C, Rota Kops E, Celik A, Tellmann L . MR-based PET motion correction procedure for simultaneous MR-PET neuroimaging of human brain. PLoS One. 2012; 7(11):e48149. PMC: 3495949. DOI: 10.1371/journal.pone.0048149. View

5.
Jiao J, Bousse A, Thielemans K, Burgos N, Weston P, Schott J . Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data. IEEE Trans Med Imaging. 2016; 36(1):203-213. DOI: 10.1109/TMI.2016.2594150. View