» Articles » PMID: 30470743

Deep Learning for Universal Linear Embeddings of Nonlinear Dynamics

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Nov 25
PMID 30470743
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear has the potential to enable nonlinear prediction, estimation, and control using linear theory. The Koopman operator is a leading data-driven embedding, and its eigenfunctions provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven challenging. This work leverages deep learning to discover representations of Koopman eigenfunctions from data. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold. We identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems with continuous spectra. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to decades of asymptotics. Thus, we benefit from the power of deep learning, while retaining the physical interpretability of Koopman embeddings.

Citing Articles

MARBLE: interpretable representations of neural population dynamics using geometric deep learning.

Gosztolai A, Peach R, Arnaudon A, Barahona M, Vandergheynst P Nat Methods. 2025; 22(3):612-620.

PMID: 39962310 PMC: 11903309. DOI: 10.1038/s41592-024-02582-2.


Learning noise-induced transitions by multi-scaling reservoir computing.

Lin Z, Lu Z, Di Z, Tang Y Nat Commun. 2024; 15(1):6584.

PMID: 39097591 PMC: 11297999. DOI: 10.1038/s41467-024-50905-w.


Interpretable representation learning for 3D multi-piece intracellular structures using point clouds.

Vasan R, Ferrante A, Borensztejn A, Frick C, Gaudreault N, Mogre S bioRxiv. 2024; .

PMID: 39091871 PMC: 11291148. DOI: 10.1101/2024.07.25.605164.


Control of complex systems with generalized embedding and empirical dynamic modeling.

Park J, Sugihara G, Pao G PLoS One. 2024; 19(8):e0305408.

PMID: 39088474 PMC: 11293753. DOI: 10.1371/journal.pone.0305408.


Deep learning probability flows and entropy production rates in active matter.

Boffi N, Vanden-Eijnden E Proc Natl Acad Sci U S A. 2024; 121(25):e2318106121.

PMID: 38861599 PMC: 11194503. DOI: 10.1073/pnas.2318106121.


References
1.
Koopman B . Hamiltonian Systems and Transformation in Hilbert Space. Proc Natl Acad Sci U S A. 1931; 17(5):315-8. PMC: 1076052. DOI: 10.1073/pnas.17.5.315. View

2.
Brunton S, Brunton B, Proctor J, Kaiser E, Kutz J . Chaos as an intermittently forced linear system. Nat Commun. 2017; 8(1):19. PMC: 5449398. DOI: 10.1038/s41467-017-00030-8. View

3.
Li Q, Dietrich F, Bollt E, Kevrekidis I . Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. Chaos. 2017; 27(10):103111. DOI: 10.1063/1.4993854. View

4.
Hubel D, Wiesel T . Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962; 160:106-54. PMC: 1359523. DOI: 10.1113/jphysiol.1962.sp006837. View

5.
Budisic M, Mohr R, Mezic I . Applied Koopmanism. Chaos. 2013; 22(4):047510. DOI: 10.1063/1.4772195. View