» Articles » PMID: 29295994

VAMPnets for Deep Learning of Molecular Kinetics

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Jan 4
PMID 29295994
Citations 112
Authors
Affiliations
Soon will be listed here.
Abstract

There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.

Citing Articles

DeepPath: Overcoming data scarcity for protein transition pathway prediction using physics-based deep learning.

Pang Y, Kuo K, Yang L, Gumbart J bioRxiv. 2025; .

PMID: 40060558 PMC: 11888466. DOI: 10.1101/2025.02.27.640693.


The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations.

Ganscha S, Unke O, Ahlin D, Maennel H, Kashubin S, Muller K Sci Data. 2025; 12(1):406.

PMID: 40057556 PMC: 11890765. DOI: 10.1038/s41597-025-04720-7.


Markov State Models with Weighted Ensemble Simulation: How to Eliminate the Trajectory Merging Bias.

Bose S, Kilinc C, Dickson A J Chem Theory Comput. 2025; 21(4):1805-1816.

PMID: 39933004 PMC: 11866749. DOI: 10.1021/acs.jctc.4c01141.


Using pretrained graph neural networks with token mixers as geometric featurizers for conformational dynamics.

Pengmei Z, Lorpaiboon C, Guo S, Weare J, Dinner A J Chem Phys. 2025; 162(4).

PMID: 39873278 PMC: 11779506. DOI: 10.1063/5.0244453.


Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation.

Li H, Ma A Nat Commun. 2025; 16(1):786.

PMID: 39824807 PMC: 11742398. DOI: 10.1038/s41467-025-55983-y.


References
1.
Trendelkamp-Schroer B, Wu H, Paul F, Noe F . Estimation and uncertainty of reversible Markov models. J Chem Phys. 2015; 143(17):174101. DOI: 10.1063/1.4934536. View

2.
Doerr S, Harvey M, Noe F, De Fabritiis G . HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J Chem Theory Comput. 2016; 12(4):1845-52. DOI: 10.1021/acs.jctc.6b00049. View

3.
Buchete N, Hummer G . Coarse master equations for peptide folding dynamics. J Phys Chem B. 2008; 112(19):6057-69. DOI: 10.1021/jp0761665. View

4.
Kube S, Weber M . A coarse graining method for the identification of transition rates between molecular conformations. J Chem Phys. 2007; 126(2):024103. DOI: 10.1063/1.2404953. View

5.
Lindorff-Larsen K, Piana S, Dror R, Shaw D . How fast-folding proteins fold. Science. 2011; 334(6055):517-20. DOI: 10.1126/science.1208351. View