» Articles » PMID: 30464327

Live E. Coli Bacteria Label-free Sensing Using a Microcavity In-line Mach-Zehnder Interferometer

Overview
Journal Sci Rep
Specialty Science
Date 2018 Nov 23
PMID 30464327
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The paper presents the first study to date on selective label-free biosensing with a microcavity in-line Mach-Zehnder interferometer induced in an optical fiber. The sensing structures were fabricated in a single-mode fiber by femtosecond laser micromachining. In contrast to other studies of this sensing scheme, where only the sensitivity to refractive index changes in the cavity was investigated, this research used chemical surface treatment of the sensor to ensure detection specificity. Immobilized MS2 bacteriophages were applied as recognition elements specifically targeting live E. coli C3000 bacteria. It is shown that the sensor allows for real-time monitoring of biological phenomena taking place on the surface of the microcavity. The developed biosensor exhibits ultrahigh refractive index sensitivity of 15,000 nm/RIU and is capable of detecting live E. coli bacteria concentrations as low as 100 colony forming units (CFU)/mL in liquid volume as low as picoliters.

Citing Articles

Strip-loaded Mach-Zehnder interferometer for absolute refractive index sensing.

Doughan I, Oyemakinwa K, Ovaskainen O, Roussey M Sci Rep. 2024; 14(1):3064.

PMID: 38321087 PMC: 10847090. DOI: 10.1038/s41598-024-53326-3.


Nanostructured biosensing platforms for the detection of food- and water-borne pathogenic Escherichia coli.

Zhou Q, Natarajan B, Kannan P Anal Bioanal Chem. 2023; 415(16):3111-3129.

PMID: 37169938 DOI: 10.1007/s00216-023-04731-6.


Low-volume label-free SARS-CoV-2 detection with the microcavity-based optical fiber sensor.

Janik M, Gabler T, Koba M, Panasiuk M, Dashkevich Y, Lega T Sci Rep. 2023; 13(1):1512.

PMID: 36707671 PMC: 9880943. DOI: 10.1038/s41598-023-28790-y.


Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine.

Nguyen T, Pradeep S, Judson-Torres R, Reed J, Teitell M, Zangle T ACS Nano. 2022; 16(8):11516-11544.

PMID: 35916417 PMC: 10112851. DOI: 10.1021/acsnano.1c11507.


Simultaneous Detection of and in Drinking Water and Milk with Mach-Zehnder Interferometers Monolithically Integrated on Silicon Chips.

Angelopoulou M, Petrou P, Misiakos K, Raptis I, Kakabakos S Biosensors (Basel). 2022; 12(7).

PMID: 35884310 PMC: 9313075. DOI: 10.3390/bios12070507.


References
1.
Wandermur G, Rodrigues D, Allil R, Queiroz V, Peixoto R, Werneck M . Plastic optical fiber-based biosensor platform for rapid cell detection. Biosens Bioelectron. 2013; 54:661-6. DOI: 10.1016/j.bios.2013.11.030. View

2.
Rodrigues D, Elimelech M . Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Biofouling. 2009; 25(5):401-11. DOI: 10.1080/08927010902833443. View

3.
Pal M, Lee S, Kwon D, Hwang J, Lee H, Hwang S . Direct immobilization of antibodies on Zn-doped FeO nanoclusters for detection of pathogenic bacteria. Anal Chim Acta. 2016; 952:81-87. DOI: 10.1016/j.aca.2016.11.041. View

4.
Li Y, Ma H, Gan L, Gong A, Zhang H, Liu D . Immobilized optical fiber microprobe for selective and sensitive Escherichia coli detection. J Biophotonics. 2017; :e201700162. DOI: 10.1002/jbio.201700162. View

5.
Li Z, Liao C, Wang Y, Xu L, Wang D, Dong X . Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer. Opt Express. 2015; 23(5):6673-8. DOI: 10.1364/OE.23.006673. View