» Articles » PMID: 30294064

Cine Cardiac MRI Slice Misalignment Correction Towards Full 3D Left Ventricle Segmentation

Overview
Date 2018 Oct 9
PMID 30294064
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate segmentation of the left ventricle (LV) blood-pool and myocardium is required to compute cardiac function assessment parameters or generate personalized cardiac models for pre-operative planning of minimally invasive therapy. Cardiac Cine Magnetic Resonance Imaging (MRI) is the preferred modality for high resolution cardiac imaging thanks to its capability of imaging the heart throughout the cardiac cycle, while providing tissue contrast superior to other imaging modalities without ionizing radiation. However, there exists an inevitable misalignment between the slices in cine MRI due to the 2D + time acquisition, rendering 3D segmentation methods ineffective. A large part of published work on cardiac MR image segmentation focuses on 2D segmentation methods that yield good results in mid-slices, however with less accurate results for the apical and basal slices. Here, we propose an algorithm to correct for the slice misalignment using a Convolutional Neural Network (CNN)-based regression method, and then perform a 3D graph-cut based segmentation of the LV using atlas shape prior. Our algorithm is able to reduce the median slice misalignment error from 3.13 to 2.07 pixels, and obtain the blood-pool segmentation with an accuracy characterized by a 0.904 mean dice overlap and 0.56 mm mean surface distance with respect to the gold-standard blood-pool segmentation for 9 test cine MR datasets.

Citing Articles

Motion correction and super-resolution for multi-slice cardiac magnetic resonance imaging via an end-to-end deep learning approach.

Chen Z, Ren H, Li Q, Li X Comput Med Imaging Graph. 2024; 115:102389.

PMID: 38692199 PMC: 11144076. DOI: 10.1016/j.compmedimag.2024.102389.


Comparative Study of 2D-Cine and 3D-wh Volumetry: Revealing Systemic Error of 2D-Cine Volumetry.

Alkassar M, Engelhardt S, Abu-Tair T, Ojeda E, Treffer P, Weyand M Diagnostics (Basel). 2023; 13(20).

PMID: 37891983 PMC: 10605840. DOI: 10.3390/diagnostics13203162.


CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI.

Upendra R, Wentz B, Simon R, Shontz S, Linte C Funct Imaging Model Heart. 2023; 12738:253-263.

PMID: 37216301 PMC: 10198131. DOI: 10.1007/978-3-030-78710-3_25.


Medical image alignment based on landmark- and approximate contour-matching.

Mojica M, Pop M, Ebrahimi M J Med Imaging (Bellingham). 2021; 8(6):064003.

PMID: 34901311 PMC: 8652578. DOI: 10.1117/1.JMI.8.6.064003.


Motion Extraction of the Right Ventricle from 4D Cardiac Cine MRI Using A Deep Learning-Based Deformable Registration Framework.

Upendra R, Hasan S, Simon R, Wentz B, Shontz S, Sacks M Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:3795-3799.

PMID: 34892062 PMC: 9137928. DOI: 10.1109/EMBC46164.2021.9630586.


References
1.
Yaniv Z, Lowekamp B, Johnson H, Beare R . SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research. J Digit Imaging. 2017; 31(3):290-303. PMC: 5959828. DOI: 10.1007/s10278-017-0037-8. View

2.
Suinesiaputra A, Cowan B, Al-Agamy A, Elattar M, Ayache N, Fahmy A . A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med Image Anal. 2013; 18(1):50-62. PMC: 3840080. DOI: 10.1016/j.media.2013.09.001. View

3.
Fonseca C, Backhaus M, Bluemke D, Britten R, Chung J, Cowan B . The Cardiac Atlas Project--an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics. 2011; 27(16):2288-95. PMC: 3150036. DOI: 10.1093/bioinformatics/btr360. View

4.
LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015; 521(7553):436-44. DOI: 10.1038/nature14539. View

5.
Shelhamer E, Long J, Darrell T . Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2016; 39(4):640-651. DOI: 10.1109/TPAMI.2016.2572683. View