» Articles » PMID: 37216301

CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI

Overview
Publisher Springer
Date 2023 May 22
PMID 37216301
Authors
Affiliations
Soon will be listed here.
Abstract

Patient-specific left ventricle (LV) myocardial models have the potential to be used in a variety of clinical scenarios for improved diagnosis and treatment plans. Cine cardiac magnetic resonance (MR) imaging provides high resolution images to reconstruct patient-specific geometric models of the LV myocardium. With the advent of deep learning, accurate segmentation of cardiac chambers from cine cardiac MR images and unsupervised learning for image registration for cardiac motion estimation on a large number of image datasets is attainable. Here, we propose a deep leaning-based framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images, using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We use the deformation field estimated from the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole (ED) frame to the subsequent frames of the cardiac cycle. We assess the CNN-based propagated models against segmented models at each cardiac phase, as well as models propagated using another traditional nonrigid image registration technique. Additionally, we generate dynamic LV myocardial volume meshes at all phases of the cardiac cycle using the log barrier-based mesh warping (LBWARP) method and compare them with the CNN-propagated volume meshes.

Citing Articles

Deformable Image Registration Using Vision Transformers for Cardiac Motion Estimation from Cine Cardiac MRI Images.

Upendra R, Simon R, Shontz S, Linte C Funct Imaging Model Heart. 2024; 13958:375-383.

PMID: 39391840 PMC: 11466156. DOI: 10.1007/978-3-031-35302-4_39.


High-Order Cardiomyopathy Human Heart Model and Mesh Generation.

Mohammadi F, Shontz S, Linte C Comput Cardiol (2010). 2022; 2021.

PMID: 35647206 PMC: 9140116. DOI: 10.23919/cinc53138.2021.9662923.


Motion Extraction of the Right Ventricle from 4D Cardiac Cine MRI Using A Deep Learning-Based Deformable Registration Framework.

Upendra R, Hasan S, Simon R, Wentz B, Shontz S, Sacks M Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:3795-3799.

PMID: 34892062 PMC: 9137928. DOI: 10.1109/EMBC46164.2021.9630586.

References
1.
Klein S, Staring M, Murphy K, Viergever M, Pluim J . elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2009; 29(1):196-205. DOI: 10.1109/TMI.2009.2035616. View

2.
Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D . Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999; 18(8):712-21. DOI: 10.1109/42.796284. View

3.
Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi A . euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus. 2012; 1(3):349-64. PMC: 3262448. DOI: 10.1098/rsfs.2010.0048. View

4.
Upendra R, Wentz B, Shontz S, Linte C . A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images. Comput Cardiol (2010). 2021; 47. PMC: 8168986. DOI: 10.22489/CinC.2020.204. View

5.
Dalca A, Balakrishnan G, Guttag J, Sabuncu M . Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med Image Anal. 2019; 57:226-236. DOI: 10.1016/j.media.2019.07.006. View