» Articles » PMID: 34079839

A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images

Overview
Date 2021 Jun 3
PMID 34079839
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.

Citing Articles

Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance.

Le Y, Zhao C, An J, Zhou J, Deng D, He Y Rev Cardiovasc Med. 2025; 25(12):447.

PMID: 39742214 PMC: 11683706. DOI: 10.31083/j.rcm2512447.


Deformable Image Registration Using Vision Transformers for Cardiac Motion Estimation from Cine Cardiac MRI Images.

Upendra R, Simon R, Shontz S, Linte C Funct Imaging Model Heart. 2024; 13958:375-383.

PMID: 39391840 PMC: 11466156. DOI: 10.1007/978-3-031-35302-4_39.


CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI.

Upendra R, Wentz B, Simon R, Shontz S, Linte C Funct Imaging Model Heart. 2023; 12738:253-263.

PMID: 37216301 PMC: 10198131. DOI: 10.1007/978-3-030-78710-3_25.


Motion Extraction of the Right Ventricle from 4D Cardiac Cine MRI Using A Deep Learning-Based Deformable Registration Framework.

Upendra R, Hasan S, Simon R, Wentz B, Shontz S, Sacks M Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:3795-3799.

PMID: 34892062 PMC: 9137928. DOI: 10.1109/EMBC46164.2021.9630586.

References
1.
Morales M, Izquierdo-Garcia D, Aganj I, Kalpathy-Cramer J, Rosen B, Catana C . Implementation and Validation of a Three-dimensional Cardiac Motion Estimation Network. Radiol Artif Intell. 2020; 1(4):e180080. PMC: 6677286. DOI: 10.1148/ryai.2019180080. View

2.
Shi W, Zhuang X, Wang H, Duckett S, Luong D, Tobon-Gomez C . A comprehensive cardiac motion estimation framework using both untagged and 3-D tagged MR images based on nonrigid registration. IEEE Trans Med Imaging. 2012; 31(6):1263-75. DOI: 10.1109/TMI.2012.2188104. View

3.
Dangi S, Linte C, Yaniv Z . Cine Cardiac MRI Slice Misalignment Correction Towards Full 3D Left Ventricle Segmentation. Proc SPIE Int Soc Opt Eng. 2018; 10576. PMC: 6168009. DOI: 10.1117/12.2294936. View

4.
Balakrishnan G, Zhao A, Sabuncu M, Guttag J, Dalca A . VoxelMorph: A Learning Framework for Deformable Medical Image Registration. IEEE Trans Med Imaging. 2019; . DOI: 10.1109/TMI.2019.2897538. View

5.
Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P . Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?. IEEE Trans Med Imaging. 2018; 37(11):2514-2525. DOI: 10.1109/TMI.2018.2837502. View