» Articles » PMID: 30205839

Cancer Expression Quantitative Trait Loci (eQTLs) Can Be Determined from Heterogeneous Tumor Gene Expression Data by Modeling Variation in Tumor Purity

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2018 Sep 13
PMID 30205839
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Expression quantitative trait loci (eQTLs) identified using tumor gene expression data could affect gene expression in cancer cells, tumor-associated normal cells, or both. Here, we have demonstrated a method to identify eQTLs affecting expression in cancer cells by modeling the statistical interaction between genotype and tumor purity. Only one third of breast cancer risk variants, identified as eQTLs from a conventional analysis, could be confidently attributed to cancer cells. The remaining variants could affect cells of the tumor microenvironment, such as immune cells and fibroblasts. Deconvolution of tumor eQTLs will help determine how inherited polymorphisms influence cancer risk, development, and treatment response.

Citing Articles

Leveraging genome-wide association studies to better understand the etiology of cancers.

Sonehara K, Okada Y Cancer Sci. 2024; 116(2):288-296.

PMID: 39561785 PMC: 11786324. DOI: 10.1111/cas.16402.


Identify Regulatory eQTLs by Multiome Sequencing in Prostate Single Cells.

Tian Y, Wu L, Huang C, Wang L bioRxiv. 2024; .

PMID: 38948854 PMC: 11213234. DOI: 10.1101/2024.06.19.599704.


Epigenome-augmented eQTL-hotspots reveal genome-wide transcriptional programs in 36 human tissues.

Liu H, Chen Q, Guo J, Zhou Y, You Z, Ren J Brief Bioinform. 2024; 25(3).

PMID: 38546325 PMC: 10976914. DOI: 10.1093/bib/bbae109.


Leveraging molecular quantitative trait loci to comprehend complex diseases/traits from the omics perspective.

Zhu Z, Chen X, Zhang S, Yu R, Qi C, Cheng L Hum Genet. 2023; 142(11):1543-1560.

PMID: 37755483 DOI: 10.1007/s00439-023-02602-9.


Refined expression quantitative trait locus analysis on adenocarcinoma at the gastroesophageal junction reveals susceptibility and prognostic markers.

Zhong C, Wu C, Lin Y, Lin D Front Genet. 2023; 14:1180500.

PMID: 37265963 PMC: 10230079. DOI: 10.3389/fgene.2023.1180500.


References
1.
Hanahan D, Weinberg R . Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-74. DOI: 10.1016/j.cell.2011.02.013. View

2.
Geeleher P, Nath A, Wang F, Zhang Z, Barbeira A, Fessler J . Cancer expression quantitative trait loci (eQTLs) can be determined from heterogeneous tumor gene expression data by modeling variation in tumor purity. Genome Biol. 2018; 19(1):130. PMC: 6131897. DOI: 10.1186/s13059-018-1507-0. View

3.
Stadler Z, Thom P, Robson M, Weitzel J, Kauff N, Hurley K . Genome-wide association studies of cancer. J Clin Oncol. 2010; 28(27):4255-67. PMC: 2953976. DOI: 10.1200/JCO.2009.25.7816. View

4.
Shen-Orr S, Tibshirani R, Khatri P, Bodian D, Staedtler F, Perry N . Cell type-specific gene expression differences in complex tissues. Nat Methods. 2010; 7(4):287-9. PMC: 3699332. DOI: 10.1038/nmeth.1439. View

5.
Geeleher P, Hartnett L, Egan L, Golden A, Ali R, Seoighe C . Gene-set analysis is severely biased when applied to genome-wide methylation data. Bioinformatics. 2013; 29(15):1851-7. DOI: 10.1093/bioinformatics/btt311. View