» Articles » PMID: 30202881

Landscape of the Complete RNA Chemical Modifications in the Human 80S Ribosome

Overview
Specialty Biochemistry
Date 2018 Sep 12
PMID 30202881
Citations 187
Authors
Affiliations
Soon will be listed here.
Abstract

During ribosome biogenesis, ribosomal RNAs acquire various chemical modifications that ensure the fidelity of translation, and dysregulation of the modification processes can cause proteome changes as observed in cancer and inherited human disorders. Here, we report the complete chemical modifications of all RNAs of the human 80S ribosome as determined with quantitative mass spectrometry. We assigned 228 sites with 14 different post-transcriptional modifications, most of which are located in functional regions of the ribosome. All modifications detected are typical of eukaryotic ribosomal RNAs, and no human-specific modifications were observed, in contrast to a recently reported cryo-electron microscopy analysis. While human ribosomal RNAs appeared to have little polymorphism regarding the post-transcriptional modifications, we found that pseudouridylation at two specific sites in 28S ribosomal RNA are significantly reduced in ribosomes of patients with familial dyskeratosis congenita, a genetic disease caused by a point mutation in the pseudouridine synthase gene DKC1. The landscape of the entire epitranscriptomic ribosomal RNA modifications provides a firm basis for understanding ribosome function and dysfunction associated with human disease.

Citing Articles

Small nucleolar RNAs: the hidden precursors of cancer ribosomes.

Faucher-Giguere L, de Preval B, Rivera A, Scott M, Elela S Philos Trans R Soc Lond B Biol Sci. 2025; 380(1921):20230376.

PMID: 40045787 PMC: 11883439. DOI: 10.1098/rstb.2023.0376.


Impacts of ribosomal RNA sequence variation on gene expression and phenotype.

Welfer G, Brady R, Natchiar S, Watson Z, Rundlet E, Alejo J Philos Trans R Soc Lond B Biol Sci. 2025; 380(1921):20230379.

PMID: 40045785 PMC: 11883441. DOI: 10.1098/rstb.2023.0379.


Ribosomes: from conserved origin to functional/medical mobility and heterogeneity.

Rivalta A, Hiregange D, Bose T, Rajan K, Yonath A, Zimmerman E Philos Trans R Soc Lond B Biol Sci. 2025; 380(1921):20230393.

PMID: 40045780 PMC: 11883434. DOI: 10.1098/rstb.2023.0393.


Mapping snoRNA-target RNA interactions in an RNA-binding protein-dependent manner with chimeric eCLIP.

Song Z, Bae B, Schnabl S, Yuan F, De Zoysa T, Akinyi M Genome Biol. 2025; 26(1):39.

PMID: 40001124 PMC: 11863803. DOI: 10.1186/s13059-025-03508-7.


NAIL-MS reveals tRNA and rRNA hypomodification as a consequence of 5-fluorouracil treatment.

Berg M, Li C, Kaiser S Nucleic Acids Res. 2025; 53(4).

PMID: 39997220 PMC: 11851100. DOI: 10.1093/nar/gkaf090.


References
1.
Quade N, Boehringer D, Leibundgut M, van den Heuvel J, Ban N . Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Nat Commun. 2015; 6:7646. PMC: 4510694. DOI: 10.1038/ncomms8646. View

2.
Xue S, Barna M . Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol. 2012; 13(6):355-69. PMC: 4039366. DOI: 10.1038/nrm3359. View

3.
Motorin Y, Helm M . RNA nucleotide methylation. Wiley Interdiscip Rev RNA. 2011; 2(5):611-31. DOI: 10.1002/wrna.79. View

4.
Dokal I . Dyskeratosis congenita in all its forms. Br J Haematol. 2000; 110(4):768-79. DOI: 10.1046/j.1365-2141.2000.02109.x. View

5.
Sharma S, Lafontaine D . 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification. Trends Biochem Sci. 2015; 40(10):560-575. DOI: 10.1016/j.tibs.2015.07.008. View