» Articles » PMID: 22649054

Impact of Methylations of M2G966/m5C967 in 16S RRNA on Bacterial Fitness and Translation Initiation

Overview
Specialty Biochemistry
Date 2012 Jun 1
PMID 22649054
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

The functional centers of the ribosome in all organisms contain ribosomal RNA (rRNA) modifications, which are introduced by specialized enzymes and come at an energy cost for the cell. Surprisingly, none of the modifications tested so far was essential for growth and hence the functional role of modifications is largely unknown. Here, we show that the methyl groups of nucleosides m(2)G966 and m(5)C967 of 16S rRNA in Escherichia coli are important for bacterial fitness. In vitro analysis of all phases of translation suggests that the m(2)G966/m(5)C967 modifications are dispensable for elongation, termination and ribosome recycling. Rather, the modifications modulate the early stages of initiation by stabilizing the binding of fMet-tRNA(fMet) to the 30S pre-initiation complex prior to start-codon recognition. We propose that the m(2)G966 and m(5)C967 modifications help shaping the bacterial proteome, most likely by fine-tuning the rates that determine the fate of a given messenger RNA (mRNA) at early checkpoints of mRNA selection.

Citing Articles

Arginine methylation of caspase-8 controls life/death decisions in extrinsic apoptotic networks.

Wohlfromm F, Ivanisenko N, Pietkiewicz S, Konig C, Seyrek K, Kahne T Oncogene. 2024; 43(25):1955-1971.

PMID: 38730267 PMC: 11178496. DOI: 10.1038/s41388-024-03049-6.


A prophage encoded ribosomal RNA methyltransferase regulates the virulence of Shiga-toxin-producing Escherichia coli (STEC).

Gong C, Chakraborty D, Koudelka G Nucleic Acids Res. 2023; 52(2):856-871.

PMID: 38084890 PMC: 10810198. DOI: 10.1093/nar/gkad1150.


Nonessential tRNA and rRNA modifications impact the bacterial response to sub-MIC antibiotic stress.

Babosan A, Fruchard L, Krin E, Carvalho A, Mazel D, Baharoglu Z Microlife. 2023; 3:uqac019.

PMID: 37223353 PMC: 10117853. DOI: 10.1093/femsml/uqac019.


A Dynamic rRNA Ribomethylome Drives Stemness in Acute Myeloid Leukemia.

Zhou F, Aroua N, Liu Y, Rohde C, Cheng J, Wirth A Cancer Discov. 2022; 13(2):332-347.

PMID: 36259929 PMC: 9900322. DOI: 10.1158/2159-8290.CD-22-0210.


Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases.

Strassler S, Bowles I, Dey D, Jackman J, Conn G J Biol Chem. 2022; 298(10):102393.

PMID: 35988649 PMC: 9508554. DOI: 10.1016/j.jbc.2022.102393.


References
1.
Saraiya A, Lamichhane T, Chow C, SantaLucia Jr J, Cunningham P . Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. J Mol Biol. 2008; 376(3):645-57. PMC: 2262921. DOI: 10.1016/j.jmb.2007.11.102. View

2.
Studer S, Joseph S . Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell. 2006; 22(1):105-15. DOI: 10.1016/j.molcel.2006.02.014. View

3.
Calogero R, Pon C, Canonaco M, Gualerzi C . Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1988; 85(17):6427-31. PMC: 281985. DOI: 10.1073/pnas.85.17.6427. View

4.
Sergiev P, Serebryakova M, Bogdanov A, Dontsova O . The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. J Mol Biol. 2007; 375(1):291-300. DOI: 10.1016/j.jmb.2007.10.051. View

5.
Cunningham P, Nurse K, Weitzmann C, Negre D, OFENGAND J . G1401: a keystone nucleotide at the decoding site of Escherichia coli 30S ribosomes. Biochemistry. 1992; 31(33):7629-37. DOI: 10.1021/bi00148a026. View