6.
Jia Z, Meng F, Chen H, Zhu G, Li X, He Y
. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro. Nucleic Acids Res. 2022; 50(16):9368-9381.
PMC: 9458420.
DOI: 10.1093/nar/gkac698.
View
7.
DAVIS F, Allen F
. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem. 1957; 227(2):907-15.
View
8.
Mukhopadhyay S, Deogharia M, Gupta R
. Mammalian nuclear TRUB1, mitochondrial TRUB2, and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA. RNA. 2020; 27(1):66-79.
PMC: 7749629.
DOI: 10.1261/rna.076810.120.
View
9.
Khoddami V, Yerra A, Mosbruger T, Fleming A, Burrows C, Cairns B
. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci U S A. 2019; 116(14):6784-6789.
PMC: 6452723.
DOI: 10.1073/pnas.1817334116.
View
10.
Rodell R, Robalin N, Martinez N
. Why U matters: detection and functions of pseudouridine modifications in mRNAs. Trends Biochem Sci. 2023; 49(1):12-27.
PMC: 10976346.
DOI: 10.1016/j.tibs.2023.10.008.
View
11.
Cappannini A, Ray A, Purta E, Mukherjee S, Boccaletto P, Moafinejad S
. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 2023; 52(D1):D239-D244.
PMC: 10767930.
DOI: 10.1093/nar/gkad1083.
View
12.
Sun M, Fang X, Lin B, Mo J, Wang F, Zhou X
. Locus-specific detection of pseudouridine with CRISPR-Cas13a. Chem Commun (Camb). 2024; 60(30):4088-4091.
DOI: 10.1039/d4cc00179f.
View
13.
Yu Y, Meier U
. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol. 2015; 11(12):1483-94.
PMC: 4615163.
DOI: 10.4161/15476286.2014.972855.
View
14.
Eyler D, Franco M, Batool Z, Wu M, Dubuke M, Dobosz-Bartoszek M
. Pseudouridinylation of mRNA coding sequences alters translation. Proc Natl Acad Sci U S A. 2019; 116(46):23068-23074.
PMC: 6859337.
DOI: 10.1073/pnas.1821754116.
View
15.
Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K
. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018; 46(18):9289-9298.
PMC: 6182160.
DOI: 10.1093/nar/gky811.
View
16.
Karijolich J, Yi C, Yu Y
. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol. 2015; 16(10):581-5.
PMC: 5694666.
DOI: 10.1038/nrm4040.
View
17.
Ho N, GILHAM P
. The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid. Biochemistry. 1967; 6(12):3632-9.
DOI: 10.1021/bi00864a002.
View
18.
Dai Q, Zhang L, Sun H, Pajdzik K, Yang L, Ye C
. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol. 2022; 41(3):344-354.
PMC: 10017504.
DOI: 10.1038/s41587-022-01505-w.
View
19.
Borchardt E, Martinez N, Gilbert W
. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet. 2020; 54:309-336.
PMC: 8007080.
DOI: 10.1146/annurev-genet-112618-043830.
View
20.
Lei Z, Yi C
. A Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine Detection. Angew Chem Int Ed Engl. 2017; 56(47):14878-14882.
DOI: 10.1002/anie.201708276.
View