» Articles » PMID: 25775265

High-resolution Structure of the Escherichia Coli Ribosome

Overview
Date 2015 Mar 17
PMID 25775265
Citations 144
Authors
Affiliations
Soon will be listed here.
Abstract

Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation have remained poorly understood. Moreover, the functions of modifications to ribosomal RNA and ribosomal proteins have also been unclear. Here we present the structure of the Escherichia coli 70S ribosome at 2.4-Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and it suggests how solvation contributes to ribosome integrity and function as well as how the conformation of ribosomal protein uS12 aids in mRNA decoding. This structure helps to explain the phylogenetic conservation of key elements of the ribosome, including post-transcriptional and post-translational modifications, and should serve as a basis for future antibiotic development.

Citing Articles

Post-transcriptional Modifications of the Large Ribosome Subunit Assembly Intermediates in Expressing Helicase-Inactive DbpA Variant.

Gracia Mazuca L, Mohl J, Cho S, Koculi E bioRxiv. 2025; .

PMID: 39974931 PMC: 11838604. DOI: 10.1101/2025.02.04.636506.


Conserved GTPase OLA1 promotes efficient translation on D/E-rich mRNA.

Yu T, Li X, Dong W, Zhou Q, Li Q, Du Z Nat Commun. 2025; 16(1):1549.

PMID: 39934121 PMC: 11814078. DOI: 10.1038/s41467-025-56797-8.


The Expanding Universe of Extensions and Tails: Ribosomal Proteins and Histones in RNA and DNA Complex Signaling and Dynamics.

Timsit Y Genes (Basel). 2025; 16(1).

PMID: 39858592 PMC: 11764897. DOI: 10.3390/genes16010045.


Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2.

Leonarski F, Henning-Knechtel A, Kirmizialtin S, Ennifar E, Auffinger P Nucleic Acids Res. 2025; .

PMID: 39791453 PMC: 11724316. DOI: 10.1093/nar/gkae1148.


Structural insights into context-dependent inhibitory mechanisms of chloramphenicol in cells.

Xue L, Spahn C, Schacherl M, Mahamid J Nat Struct Mol Biol. 2024; 32(2):257-267.

PMID: 39668257 PMC: 11832420. DOI: 10.1038/s41594-024-01441-0.


References
1.
Gabdulkhakov A, Nikonov S, Garber M . Revisiting the Haloarcula marismortui 50S ribosomal subunit model. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 6):997-1004. DOI: 10.1107/S0907444913004745. View

2.
Loenarz C, Sekirnik R, Thalhammer A, Ge W, Spivakovsky E, Mackeen M . Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc Natl Acad Sci U S A. 2014; 111(11):4019-24. PMC: 3964080. DOI: 10.1073/pnas.1311750111. View

3.
Martinez A, Shirole N, Murakami S, Benedik M, Sachs M, Cruz-Vera L . Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res. 2011; 40(5):2247-57. PMC: 3299997. DOI: 10.1093/nar/gkr1052. View

4.
Draper D . A guide to ions and RNA structure. RNA. 2004; 10(3):335-43. PMC: 1370927. DOI: 10.1261/rna.5205404. View

5.
McMurry L, Algranati I . Effect of polyamines on translation fidelity in vivo. Eur J Biochem. 1986; 155(2):383-90. DOI: 10.1111/j.1432-1033.1986.tb09502.x. View