» Articles » PMID: 30199041

Endogenous Protein Tagging in Human Induced Pluripotent Stem Cells Using CRISPR/Cas9

Overview
Journal J Vis Exp
Date 2018 Sep 11
PMID 30199041
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

A protocol is presented for generating human induced pluripotent stem cells (hiPSCs) that express endogenous proteins fused to in-frame N- or C-terminal fluorescent tags. The prokaryotic CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) may be used to introduce large exogenous sequences into genomic loci via homology directed repair (HDR). To achieve the desired knock-in, this protocol employs the ribonucleoprotein (RNP)-based approach where wild type Streptococcus pyogenes Cas9 protein, synthetic 2-part guide RNA (gRNA), and a donor template plasmid are delivered to the cells via electroporation. Putatively edited cells expressing the fluorescently tagged proteins are enriched by fluorescence activated cell sorting (FACS). Clonal lines are then generated and can be analyzed for precise editing outcomes. By introducing the fluorescent tag at the genomic locus of the gene of interest, the resulting subcellular localization and dynamics of the fusion protein can be studied under endogenous regulatory control, a key improvement over conventional overexpression systems. The use of hiPSCs as a model system for gene tagging provides the opportunity to study the tagged proteins in diploid, nontransformed cells. Since hiPSCs can be differentiated into multiple cell types, this approach provides the opportunity to create and study tagged proteins in a variety of isogenic cellular contexts.

Citing Articles

Phosphorylation of a nuclear condensate regulates cohesion and mRNA retention.

McIntyre A, Tschan A, Meyer K, Walser S, Rai A, Fujita K Nat Commun. 2025; 16(1):390.

PMID: 39755675 PMC: 11700124. DOI: 10.1038/s41467-024-55469-3.


Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight.

Mozneb M, Arzt M, Mesci P, Martin D, Pohlman S, Lawless G NPJ Microgravity. 2024; 10(1):97.

PMID: 39402072 PMC: 11473755. DOI: 10.1038/s41526-024-00435-y.


HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells.

Li S, Wang Y, van der Stoel M, Zhou X, Madhusudan S, Kanerva K Genome Biol. 2024; 25(1):58.

PMID: 38409044 PMC: 10895734. DOI: 10.1186/s13059-024-03187-w.


Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells.

Yun W, Cho H, Jeon S, Lim D, Kim K Biomolecules. 2023; 13(12).

PMID: 38136656 PMC: 10742164. DOI: 10.3390/biom13121787.


Enrichment strategies to enhance genome editing.

Mikkelsen N, Bak R J Biomed Sci. 2023; 30(1):51.

PMID: 37393268 PMC: 10315055. DOI: 10.1186/s12929-023-00943-1.


References
1.
Cho W, Jayanth N, Mullen S, Tan T, Jung Y, Cisse I . Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing. Sci Rep. 2016; 6:35949. PMC: 5080603. DOI: 10.1038/srep35949. View

2.
Leonetti M, Sekine S, Kamiyama D, Weissman J, Huang B . A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc Natl Acad Sci U S A. 2016; 113(25):E3501-8. PMC: 4922190. DOI: 10.1073/pnas.1606731113. View

3.
DeWitt M, Corn J, Carroll D . Genome editing via delivery of Cas9 ribonucleoprotein. Methods. 2017; 121-122:9-15. PMC: 6698184. DOI: 10.1016/j.ymeth.2017.04.003. View

4.
Bae S, Park J, Kim J . Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014; 30(10):1473-5. PMC: 4016707. DOI: 10.1093/bioinformatics/btu048. View

5.
Hockemeyer D, Jaenisch R . Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell. 2016; 18(5):573-86. PMC: 4871596. DOI: 10.1016/j.stem.2016.04.013. View