» Articles » PMID: 29661792

Using Single-cell Genomics to Understand Developmental Processes and Cell Fate Decisions

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2018 Apr 18
PMID 29661792
Citations 108
Authors
Affiliations
Soon will be listed here.
Abstract

High-throughput techniques have revolutionised biology, allowing for thorough and unbiased characterisation of the molecular states of biological systems. However, cellular decision-making is inherently a unicellular process to which "bulk" -omics techniques are poorly suited, as they capture ensemble averages of cell states. Recently developed single-cell methods bridge this gap, allowing high-throughput molecular surveys of individual cells. In this review, we cover core concepts of analysis of single-cell gene expression data and highlight areas of developmental biology where single-cell techniques have made important contributions. These include understanding of cell-to-cell heterogeneity, the tracing of differentiation pathways, quantification of gene expression from specific alleles, and the future directions of cell lineage tracing and spatial gene expression analysis.

Citing Articles

scLTNN: an innovative tool for automatically visualizing single-cell trajectories.

Xing C, Zeng Z, Hu L, Kang J, Roshan S, Xiong Y Bioinform Adv. 2025; 5(1):vbaf033.

PMID: 40061870 PMC: 11889453. DOI: 10.1093/bioadv/vbaf033.


Cell signaling communication within papillary craniopharyngioma revealed by an integrated analysis of single-cell RNA sequencing and bulk RNA sequencing.

Zhu X, Jia Y, Zhao Z, Zhang X, Zhao Y, Gui S J Transl Med. 2025; 23(1):124.

PMID: 39871369 PMC: 11773883. DOI: 10.1186/s12967-025-06149-3.


Trajectory inference from single-cell genomics data with a process time model.

Fang M, Gorin G, Pachter L PLoS Comput Biol. 2025; 21(1):e1012752.

PMID: 39836699 PMC: 11760028. DOI: 10.1371/journal.pcbi.1012752.


High order expression dependencies finely resolve cryptic states and subtypes in single cell data.

Jansma A, Yao Y, Wolfe J, Del Debbio L, Beentjes S, Ponting C Mol Syst Biol. 2025; 21(2):173-207.

PMID: 39748128 PMC: 11790937. DOI: 10.1038/s44320-024-00074-1.


Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics.

Chrysinas P, Venkatesan S, Ang I, Ghosh V, Chen C, Neelamegham S NAR Genom Bioinform. 2024; 6(4):lqae169.

PMID: 39703423 PMC: 11655298. DOI: 10.1093/nargab/lqae169.


References
1.
Van Gelder R, von Zastrow M, Yool A, Dement W, Barchas J, Eberwine J . Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A. 1990; 87(5):1663-7. PMC: 53542. DOI: 10.1073/pnas.87.5.1663. View

2.
Dixit A, Parnas O, Li B, Chen J, Fulco C, Jerby-Arnon L . Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell. 2016; 167(7):1853-1866.e17. PMC: 5181115. DOI: 10.1016/j.cell.2016.11.038. View

3.
Ibarra-Soria X, Jawaid W, Pijuan-Sala B, Ladopoulos V, Scialdone A, Jorg D . Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat Cell Biol. 2018; 20(2):127-134. PMC: 5787369. DOI: 10.1038/s41556-017-0013-z. View

4.
Cao J, Packer J, Ramani V, Cusanovich D, Huynh C, Daza R . Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017; 357(6352):661-667. PMC: 5894354. DOI: 10.1126/science.aam8940. View

5.
Gimelbrant A, Hutchinson J, Thompson B, Chess A . Widespread monoallelic expression on human autosomes. Science. 2007; 318(5853):1136-40. DOI: 10.1126/science.1148910. View