» Articles » PMID: 29553575

Cultivation and Sequencing of Rumen Microbiome Members from the Hungate1000 Collection

Abstract

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ∼75% of the genus-level bacterial and archaeal taxa present in the rumen.

Citing Articles

Rumen DNA virome in beef cattle reveals an unexplored diverse community with potential links to carcass traits.

Sato Y ISME Commun. 2025; 5(1):ycaf021.

PMID: 40041703 PMC: 11879238. DOI: 10.1093/ismeco/ycaf021.


Bioprospecting of 101 facultative rumen bacterial isolates through comprehensive genome analysis.

Bhure M, Savaliya K, Patil S, Nehra C, Pandit R, Shah T Mol Biol Rep. 2025; 52(1):265.

PMID: 40014144 DOI: 10.1007/s11033-025-10291-y.


Studies on fatty acids and microbiota characterization of the gastrointestinal tract of Tianzhu white yaks.

Shaopeng C, Changze C, Youpeng Q, Baohong M, Meixian Z, Chenyue J Front Microbiol. 2025; 15:1508468.

PMID: 39895933 PMC: 11784337. DOI: 10.3389/fmicb.2024.1508468.


Dynamic changes in the gastrointestinal microbial communities of Gangba sheep and analysis of their functions in plant biomass degradation at high altitude.

Liu X, Ding H, Zhang X, Ta N, Zhao J, Zhang Q Microbiome. 2025; 13(1):17.

PMID: 39838419 PMC: 11748513. DOI: 10.1186/s40168-024-02022-5.


New approaches to secondary metabolite discovery from anaerobic gut microbes.

Butkovich L, Vining O, OMalley M Appl Microbiol Biotechnol. 2025; 109(1):12.

PMID: 39831966 PMC: 11747023. DOI: 10.1007/s00253-024-13393-y.


References
1.
Paez-Espino D, Eloe-Fadrosh E, Pavlopoulos G, Thomas A, Huntemann M, Mikhailova N . Uncovering Earth's virome. Nature. 2016; 536(7617):425-30. DOI: 10.1038/nature19094. View

2.
Mistry J, Finn R, Eddy S, Bateman A, Punta M . Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013; 41(12):e121. PMC: 3695513. DOI: 10.1093/nar/gkt263. View

3.
Darling A, Jospin G, Lowe E, Matsen 4th F, Bik H, Eisen J . PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014; 2:e243. PMC: 3897386. DOI: 10.7717/peerj.243. View

4.
Wen Y, Irwin D . Mosaic evolution of ruminant stomach lysozyme genes. Mol Phylogenet Evol. 2000; 13(3):474-82. DOI: 10.1006/mpev.1999.0651. View

5.
Wollenberg E, Richards M, Smith P, Havlik P, Obersteiner M, Tubiello F . Reducing emissions from agriculture to meet the 2 °C target. Glob Chang Biol. 2016; 22(12):3859-3864. DOI: 10.1111/gcb.13340. View