» Articles » PMID: 20224823

FastTree 2--approximately Maximum-likelihood Trees for Large Alignments

Overview
Journal PLoS One
Date 2010 Mar 13
PMID 20224823
Citations 6699
Authors
Affiliations
Soon will be listed here.
Abstract

Background: We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability.

Methodology/principal Findings: Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site (the "CAT" approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and for large alignments, FastTree 2 is 100-1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory.

Conclusions/significance: FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments. FastTree 2 is freely available at http://www.microbesonline.org/fasttree.

Citing Articles

Diversity and functional features of the root-associated bacteriome are dependent on grapevine susceptibility to Plasmopara viticola.

Duret M, Wallner A, Besaury L, Aziz A Environ Microbiome. 2025; 20(1):30.

PMID: 40087775 DOI: 10.1186/s40793-025-00690-w.


Genome mining the black-yeast Aureobasidium pullulans NRRL 62031 for biotechnological traits.

Xiao D, Driller M, Stein K, Blank L, Tiso T BMC Genomics. 2025; 26(1):244.

PMID: 40082747 PMC: 11905612. DOI: 10.1186/s12864-025-11395-2.


Integration of therapeutic cargo into the human genome with programmable type V-K CAST.

Liu J, Aliaga Goltsman D, Alexander L, Khayi K, Hong J, Dunham D Nat Commun. 2025; 16(1):2427.

PMID: 40082411 PMC: 11906591. DOI: 10.1038/s41467-025-57416-2.


Diversity and Structure of the Prokaryotic Community in Tropical Monomictic Reservoir.

Barjau-Aguilar M, Reyes-Hernandez A, Merino-Ibarra M, Vilaclara G, Ramirez-Zierold J, Alcantara-Hernandez R Microb Ecol. 2025; 88(1):12.

PMID: 40072582 PMC: 11903632. DOI: 10.1007/s00248-025-02508-1.


Niche partitioning of microbial communities at an ancient vitrified hillfort: implications for vitrified radioactive waste disposal.

Plymale A, Wells J, Pearce C, Brislawn C, Graham E, Cheeke T Int Biodeterior Biodegradation. 2025; 38(1).

PMID: 40070387 PMC: 11894924. DOI: 10.1080/01490451.2020.1807658.


References
1.
Stamatakis A . RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22(21):2688-90. DOI: 10.1093/bioinformatics/btl446. View

2.
DeSantis T, Hugenholtz P, Larsen N, Rojas M, Brodie E, Keller K . Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006; 72(7):5069-72. PMC: 1489311. DOI: 10.1128/AEM.03006-05. View

3.
Stoye J, Evers D, Meyer F . Rose: generating sequence families. Bioinformatics. 1998; 14(2):157-63. DOI: 10.1093/bioinformatics/14.2.157. View

4.
Bradley R, Roberts A, Smoot M, Juvekar S, Do J, Dewey C . Fast statistical alignment. PLoS Comput Biol. 2009; 5(5):e1000392. PMC: 2684580. DOI: 10.1371/journal.pcbi.1000392. View

5.
Nei M, Kumar S, Takahashi K . The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci U S A. 1998; 95(21):12390-7. PMC: 22842. DOI: 10.1073/pnas.95.21.12390. View