» Articles » PMID: 28245920

Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development

Overview
Journal Dev Cell
Publisher Cell Press
Date 2017 Mar 2
PMID 28245920
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

How metabolism is rewired during embryonic development is still largely unknown, as it remains a major technical challenge to resolve metabolic activities or metabolite levels with spatiotemporal resolution. Here, we investigated metabolic changes during development of organogenesis-stage mouse embryos, focusing on the presomitic mesoderm (PSM). We measured glycolytic labeling kinetics from C-glucose tracing experiments and detected elevated glycolysis in the posterior, more undifferentiated PSM. We found evidence that the spatial metabolic differences are functionally relevant during PSM development. To enable real-time quantification of a glycolytic metabolite with spatiotemporal resolution, we generated a pyruvate FRET-sensor reporter mouse line. We revealed dynamic changes in cytosolic pyruvate levels as cells transit toward a more anterior PSM state. Combined, our approach identifies a gradient of glycolytic activity across the PSM, and we provide evidence that these spatiotemporal metabolic changes are intrinsically linked to PSM development and differentiation.

Citing Articles

Progress in understanding the vertebrate segmentation clock.

Isomura A, Kageyama R Nat Rev Genet. 2025; .

PMID: 40038453 DOI: 10.1038/s41576-025-00813-6.


Cell-cell heterogeneity in phosphoenolpyruvate carboxylase biases early cell fate priming in .

Abe K, Hashimura H, Hiraoka H, Fujishiro S, Kameya N, Taoka K Front Cell Dev Biol. 2025; 12:1526795.

PMID: 39968235 PMC: 11832675. DOI: 10.3389/fcell.2024.1526795.


Metabolic activities are selective modulators for individual segmentation clock processes.

Matsuda M, Lazaro J, Ebisuya M Nat Commun. 2025; 16(1):845.

PMID: 39833174 PMC: 11746943. DOI: 10.1038/s41467-025-56120-5.


Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors.

Li X, Wen X, Tang W, Wang C, Chen Y, Yang Y Cell Rep Methods. 2024; 4(11):100904.

PMID: 39536758 PMC: 11705769. DOI: 10.1016/j.crmeth.2024.100904.


Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.

Gest A, Sahan A, Zhong Y, Lin W, Mehta S, Zhang J Chem Rev. 2024; 124(22):12573-12660.

PMID: 39535501 PMC: 11613326. DOI: 10.1021/acs.chemrev.4c00293.


References
1.
Peroza E, Boumezbeur A, Zamboni N . Rapid, randomized development of genetically encoded FRET sensors for small molecules. Analyst. 2015; 140(13):4540-8. DOI: 10.1039/c5an00707k. View

2.
Aulehla A, Pourquie O . Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol. 2010; 2(2):a000869. PMC: 2828275. DOI: 10.1101/cshperspect.a000869. View

3.
Stein F, Kress M, Reither S, Piljic A, Schultz C . FluoQ: a tool for rapid analysis of multiparameter fluorescence imaging data applied to oscillatory events. ACS Chem Biol. 2013; 8(9):1862-8. DOI: 10.1021/cb4003442. View

4.
Hou B, Takanaga H, Grossmann G, Chen L, Qu X, Jones A . Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc. 2011; 6(11):1818-33. DOI: 10.1038/nprot.2011.392. View

5.
Agathocleous M, Harris W . Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol. 2013; 23(10):484-92. DOI: 10.1016/j.tcb.2013.05.004. View