Stooke-Vaughan G, Kim S, Yen S, Son K, Banavar S, Giammona J
Nat Commun. 2025; 16(1):1839.
PMID: 39984461
PMC: 11845790.
DOI: 10.1038/s41467-025-56334-7.
Naganathan S
Biochem Soc Trans. 2024; 52(3):987-995.
PMID: 38716859
PMC: 11346420.
DOI: 10.1042/BST20230173.
Miao Y, Pourquie O
Nat Rev Mol Cell Biol. 2024; 25(7):517-533.
PMID: 38418851
PMC: 11694818.
DOI: 10.1038/s41580-024-00709-z.
McDaniel C, Simsek M, Chandel A, Ozbudak E
Sci Adv. 2024; 10(4):eadk8937.
PMID: 38277458
PMC: 10816718.
DOI: 10.1126/sciadv.adk8937.
Simsek M, Ozbudak E
FEBS J. 2023; 290(21):5086-5093.
PMID: 37422856
PMC: 10774455.
DOI: 10.1111/febs.16899.
Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation.
Yabe T, Uriu K, Takada S
Nat Commun. 2023; 14(1):2115.
PMID: 37055428
PMC: 10102234.
DOI: 10.1038/s41467-023-37745-w.
Deconstructing body axis morphogenesis in zebrafish embryos using robot-assisted tissue micromanipulation.
Ozelci E, Mailand E, Ruegg M, Oates A, Sakar M
Nat Commun. 2022; 13(1):7934.
PMID: 36566327
PMC: 9789989.
DOI: 10.1038/s41467-022-35632-4.
Patterning principles of morphogen gradients.
Simsek M, Ozbudak E
Open Biol. 2022; 12(10):220224.
PMID: 36259238
PMC: 9579920.
DOI: 10.1098/rsob.220224.
Fgf8 dynamics and critical slowing down may account for the temperature independence of somitogenesis.
Zhang W, Scerbo P, Delagrange M, Candat V, Mayr V, Vriz S
Commun Biol. 2022; 5(1):113.
PMID: 35132142
PMC: 8821593.
DOI: 10.1038/s42003-022-03053-0.
Molecular and Mechanical Cues for Somite Periodicity.
Linde-Medina M, Smit T
Front Cell Dev Biol. 2021; 9:753446.
PMID: 34901002
PMC: 8663771.
DOI: 10.3389/fcell.2021.753446.
Time and space in segmentation.
Clark E
Interface Focus. 2021; 11(3):20200049.
PMID: 34055302
PMC: 8086912.
DOI: 10.1098/rsfs.2020.0049.
Towards a physical understanding of developmental patterning.
Negrete Jr J, Oates A
Nat Rev Genet. 2021; 22(8):518-531.
PMID: 33972772
DOI: 10.1038/s41576-021-00355-7.
Detection of mRNA by Whole Mount Hybridization and DNA Extraction for Genotyping of Zebrafish Embryos.
Narayanan R, Oates A
Bio Protoc. 2021; 9(6):e3193.
PMID: 33654992
PMC: 7854236.
DOI: 10.21769/BioProtoc.3193.
Hox13 genes are required for mesoderm formation and axis elongation during early zebrafish development.
Ye Z, Kimelman D
Development. 2020; 147(22).
PMID: 33154036
PMC: 7710019.
DOI: 10.1242/dev.185298.
Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish.
Keskin S, Simsek M, Vu H, Yang C, Devoto S, Ay A
iScience. 2019; 12:247-259.
PMID: 30711748
PMC: 6360518.
DOI: 10.1016/j.isci.2019.01.021.
Spatial Fold Change of FGF Signaling Encodes Positional Information for Segmental Determination in Zebrafish.
Simsek M, Ozbudak E
Cell Rep. 2018; 24(1):66-78.e8.
PMID: 29972792
PMC: 6063364.
DOI: 10.1016/j.celrep.2018.06.023.
Size-reduced embryos reveal a gradient scaling-based mechanism for zebrafish somite formation.
Ishimatsu K, Hiscock T, Collins Z, Sari D, Lischer K, Richmond D
Development. 2018; 145(11).
PMID: 29769221
PMC: 6031319.
DOI: 10.1242/dev.161257.
Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances.
Pietak A, Levin M
Prog Biophys Mol Biol. 2018; 137:52-68.
PMID: 29626560
PMC: 10464501.
DOI: 10.1016/j.pbiomolbio.2018.03.008.
Modulation of Phase Shift between Wnt and Notch Signaling Oscillations Controls Mesoderm Segmentation.
Sonnen K, Lauschke V, Uraji J, Falk H, Petersen Y, Funk M
Cell. 2018; 172(5):1079-1090.e12.
PMID: 29474908
PMC: 5847172.
DOI: 10.1016/j.cell.2018.01.026.
Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development.
Bulusu V, Prior N, Snaebjornsson M, Kuehne A, Sonnen K, Kress J
Dev Cell. 2017; 40(4):331-341.e4.
PMID: 28245920
PMC: 5337618.
DOI: 10.1016/j.devcel.2017.01.015.