» Articles » PMID: 27762356

Genome Evolution in the Allotetraploid Frog Xenopus Laevis

Abstract

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.

Citing Articles

An Extensive Survey of Vertebrate-specific, Nonvisual Opsins Identifies a Novel Subfamily, Q113-Bistable Opsin.

Gyoja F, Sato K, Yamashita T, Kusakabe T Genome Biol Evol. 2025; 17(3).

PMID: 40036976 PMC: 11893379. DOI: 10.1093/gbe/evaf032.


FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs.

Bergelova B, Gvozdik V, Knytl M Heredity (Edinb). 2025; .

PMID: 40025138 DOI: 10.1038/s41437-025-00749-x.


Every Gain Comes With Loss: Ecological and Physiological Shifts Associated With Polyploidization in a Pygmy Frog.

Chen Q, Zhu W, Chang L, Zhang M, Wang S, Liu J Mol Biol Evol. 2025; 42(2).

PMID: 39918026 PMC: 11840752. DOI: 10.1093/molbev/msaf037.


-mer approaches for biodiversity genomics.

Jenike K, Campos-Dominguez L, Bodde M, Cerca J, Hodson C, Schatz M Genome Res. 2025; 35(2):219-230.

PMID: 39890468 PMC: 11874746. DOI: 10.1101/gr.279452.124.


Rapid expansion and specialization of the TAS2R bitter taste receptor family in amphibians.

Higgins K, Itoigawa A, Toda Y, Bellott D, Anderson R, Marquez R PLoS Genet. 2025; 21(1):e1011533.

PMID: 39888968 PMC: 11798467. DOI: 10.1371/journal.pgen.1011533.


References
1.
Force A, Lynch M, Pickett F, Amores A, Yan Y, Postlethwait J . Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999; 151(4):1531-45. PMC: 1460548. DOI: 10.1093/genetics/151.4.1531. View

2.
Woods I, Wilson C, Friedlander B, Chang P, Reyes D, Nix R . The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res. 2005; 15(9):1307-14. PMC: 1199546. DOI: 10.1101/gr.4134305. View

3.
McCLINTOCK B . The significance of responses of the genome to challenge. Science. 1984; 226(4676):792-801. DOI: 10.1126/science.15739260. View

4.
Garsmeur O, Schnable J, Almeida A, Jourda C, DHont A, Freeling M . Two evolutionarily distinct classes of paleopolyploidy. Mol Biol Evol. 2013; 31(2):448-54. DOI: 10.1093/molbev/mst230. View

5.
Calvo S, Clauser K, Mootha V . MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2015; 44(D1):D1251-7. PMC: 4702768. DOI: 10.1093/nar/gkv1003. View