» Articles » PMID: 27570695

Phase-stable Swept Source OCT Angiography in Human Skin Using an Akinetic Source

Overview
Specialty Radiology
Date 2016 Aug 30
PMID 27570695
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate noninvasive structural and microvascular contrast imaging of human skin in vivo, using phase difference swept source OCT angiography (pOCTA). The pOCTA system employs an akinetic, all-semiconductor, highly phase-stable swept laser source which operates at 1340 nm central wavelength, with 37 nm bandwidth (at 0 dB region) and 200 kHz A-scan rate. The phase sensitive detection does not need any external phase stabilizing implementations, due to the outstanding high phase linearity and sweep phase repeatability within 2 mrad. We compare the performance of phase based OCTA to speckle based OCTA for visualizing human vascular networks. pOCTA shows better contrast especially for deeper vascular details as compared to speckle based OCTA. The phase stability of the akinetic source allows the OCTA system to show decent vascular contrast only with 2 B-scans. We compare the performance of using 2 versus 4 B-scans for calculating the vascular contrast. Finally, the performance of a 100 nm bandwidth akinetic laser at 1310 nm is investigated for both OCT and OCTA.

Citing Articles

Development of a label-free, functional, molecular and structural imaging system combining optical coherence tomography and Raman spectroscopy for in vivo measurement of rat retina.

Sentosa R, Salas M, Merkle C, Eibl M, de Jong W, Amelink A Biomed Opt Express. 2025; 16(2):566-577.

PMID: 39958836 PMC: 11828446. DOI: 10.1364/BOE.541315.


Optical coherence tomography angiography enables visualization of microvascular patterns in chronic venous insufficiency.

Rotunno G, Deinsberger J, Meiburger K, Krainz L, Bugyi L, Hacker V iScience. 2025; 27(11):110998.

PMID: 39759076 PMC: 11700630. DOI: 10.1016/j.isci.2024.110998.


Exploring single-mode VCSEL wavelength tuning for low-cost 3D optical coherence tomography and OCT angiography.

Kendrisic M, Nienhaus J, Agafonov V, Salas M, Nguyen Q, Resch H Biomed Opt Express. 2024; 15(8):4719-4736.

PMID: 39346996 PMC: 11427204. DOI: 10.1364/BOE.523081.


Wide-field OCT angiography for non-human primate retinal imaging.

Wei X, Hormel T, Renner L, Neuringer M, Jia Y Biomed Opt Express. 2024; 15(8):4642-4654.

PMID: 39346973 PMC: 11427193. DOI: 10.1364/BOE.525839.


Continuous adiabatic frequency conversion for FMCW-LiDAR.

Mrokon A, Oehler J, Breunig I Sci Rep. 2024; 14(1):4990.

PMID: 38424205 PMC: 10904768. DOI: 10.1038/s41598-024-55687-1.


References
1.
Chen Z, Milner T, Srinivas S, Wang X, Malekafzali A, van Gemert M . Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett. 1997; 22(14):1119-21. DOI: 10.1364/ol.22.001119. View

2.
Izatt J, Kulkarni M, Yazdanfar S, Barton J, Welch A . In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett. 2008; 22(18):1439-41. DOI: 10.1364/ol.22.001439. View

3.
Mariampillai A, Standish B, Moriyama E, Khurana M, Munce N, Leung M . Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008; 33(13):1530-2. DOI: 10.1364/ol.33.001530. View

4.
Schmoll T, Kolbitsch C, Leitgeb R . Ultra-high-speed volumetric tomography of human retinal blood flow. Opt Express. 2009; 17(5):4166-76. DOI: 10.1364/oe.17.004166. View

5.
Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T . Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt Express. 2009; 11(23):3116-21. DOI: 10.1364/oe.11.003116. View