» Articles » PMID: 20588668

Ultrahigh Sensitive Optical Microangiography for in Vivo Imaging of Microcirculations Within Human Skin Tissue Beds

Overview
Journal Opt Express
Date 2010 Jul 1
PMID 20588668
Citations 158
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, we demonstrate for the first time that the detailed cutaneous blood flow at capillary level within dermis of human skin can be imaged by optical micro-angiography (OMAG) technique. A novel scanning protocol, i.e. fast B scan mode is used to achieve the capillary flow imaging. We employ a 1310nm system to scan the skin tissue at an imaging rate of 300 frames per second, which requires only ~5 sec to complete one 3D imaging of capillary blood flow within skin. The technique is sensitive enough to image the very slow blood flows at ~4 microm/sec. The promising results show a great potential of OMAG's role in the diagnosis, treatment and management of human skin diseases.

Citing Articles

Dynamic optical coherence tomography for imaging acute wound healing.

Schuh S, Berger M, Schiele S, Rubeck A, Muller G, Gonzalez J Int Wound J. 2024; 21(8):e70015.

PMID: 39165043 PMC: 11336043. DOI: 10.1111/iwj.70015.


Optical coherence tomography.

Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C Nat Rev Methods Primers. 2023; 2.

PMID: 36751306 PMC: 9901537. DOI: 10.1038/s43586-022-00162-2.


Integrating a pressure sensor with an OCT handheld probe to facilitate imaging of microvascular information in skin tissue beds.

Shi Y, Lu J, Le N, Wang R Biomed Opt Express. 2023; 13(11):6153-6166.

PMID: 36733756 PMC: 9872897. DOI: 10.1364/BOE.473013.


High resolution imaging and quantification of the nailfold microvasculature using optical coherence tomography angiography (OCTA) and capillaroscopy: a preliminary study in healthy subjects.

Dong L, Wei Y, Lan G, Chen J, Xu J, Qin J Quant Imaging Med Surg. 2022; 12(3):1844-1858.

PMID: 35284284 PMC: 8899956. DOI: 10.21037/qims-21-672.


Blood vessel tail artifacts suppression in optical coherence tomography angiography.

Li Y, Tang J Neurophotonics. 2022; 9(2):021906.

PMID: 35106321 PMC: 8785979. DOI: 10.1117/1.NPh.9.2.021906.


References
1.
Zhang H, Maslov K, Stoica G, Wang L . Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006; 24(7):848-51. DOI: 10.1038/nbt1220. View

2.
Braverman I . The cutaneous microcirculation. J Investig Dermatol Symp Proc. 2001; 5(1):3-9. DOI: 10.1046/j.1087-0024.2000.00010.x. View

3.
Mariampillai A, Standish B, Moriyama E, Khurana M, Munce N, Leung M . Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008; 33(13):1530-2. DOI: 10.1364/ol.33.001530. View

4.
Fingler J, Schwartz D, Yang C, Fraser S . Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express. 2009; 15(20):12636-53. DOI: 10.1364/oe.15.012636. View

5.
Grulkowski I, Gorczynska I, Szkulmowski M, Szlag D, Szkulmowska A, Leitgeb R . Scanning protocols dedicated to smart velocity ranging in spectral OCT. Opt Express. 2010; 17(26):23736-54. DOI: 10.1364/OE.17.023736. View