Zhu Y, Zhu L, Lim Y, Makita S, Guo Y, Yasuno Y
Biomed Opt Express. 2024; 15(7):4044-4064.
PMID: 39022550
PMC: 11249682.
DOI: 10.1364/BOE.524894.
Valmaggia P, Cattin P, Sandkuhler R, Inglin N, Otto T, Aumann S
Invest Ophthalmol Vis Sci. 2024; 65(6):9.
PMID: 38837167
PMC: 11160951.
DOI: 10.1167/iovs.65.6.9.
Nissen A, Vergmann A
Ophthalmol Ther. 2024; 13(4):903-915.
PMID: 38372953
PMC: 10912399.
DOI: 10.1007/s40123-024-00905-2.
Zheng F, Deng X, Zhang Q, He J, Ye P, Liu S
Adv Ophthalmol Pract Res. 2023; 3(2):67-79.
PMID: 37846376
PMC: 10577875.
DOI: 10.1016/j.aopr.2022.10.005.
Afsharan H, Silva D, Joo C, Cense B
Biomolecules. 2023; 13(8).
PMID: 37627295
PMC: 10452597.
DOI: 10.3390/biom13081230.
Macular superficial vascular density on optical coherence tomography angiography in children with unilateral anisometropic and bilateral hyperopic amblyopia.
Chung Y, Shin S, Yim H
Sci Rep. 2023; 13(1):12879.
PMID: 37553433
PMC: 10409713.
DOI: 10.1038/s41598-023-40025-8.
Theoretical model for optical coherence tomography imaging and its application to volumetric differential contrast imaging.
Tomita K, Makita S, Fukutake N, Morishita R, El-Sadek I, Mukherjee P
Biomed Opt Express. 2023; 14(7):3100-3124.
PMID: 37497522
PMC: 10368023.
DOI: 10.1364/BOE.491510.
Optical Coherence Tomography Angiography in Retinal Vascular Disorders.
Ong C, Wong M, Cheong K, Zhao J, Teo K, Tan T
Diagnostics (Basel). 2023; 13(9).
PMID: 37175011
PMC: 10178415.
DOI: 10.3390/diagnostics13091620.
High-speed measurement of retinal arterial blood flow in the living human eye with adaptive optics ophthalmoscopy.
Liu R, Wang X, Hoshi S, Zhang Y
Opt Lett. 2023; 48(8):1994-1997.
PMID: 37058625
PMC: 11185870.
DOI: 10.1364/OL.480896.
Longitudinal monitoring of pancreatic islet damage in streptozotocin-treated mice with optical coherence microscopy.
Park W, Kim J, Le H, Kim B, Berggren P, Kim K
Biomed Opt Express. 2023; 14(1):54-64.
PMID: 36698658
PMC: 9841987.
DOI: 10.1364/BOE.470188.
Using the dynamic forward scattering signal for optical coherence tomography based blood flow quantification.
Nam A, Braaf B, Vakoc B
Opt Lett. 2022; 47(12):3083-3086.
PMID: 35709056
PMC: 9580005.
DOI: 10.1364/OL.455475.
Retinal Blood Velocity Waveform Characteristics With Aging and Arterial Stiffening in Hypertensive and Normotensive Subjects.
Takizawa Y, Song Y, Tani T, Yoshioka T, Takahashi K, Abe T
Transl Vis Sci Technol. 2021; 10(13):25.
PMID: 34792557
PMC: 8606851.
DOI: 10.1167/tvst.10.13.25.
Update on Optical Coherence Tomography and Optical Coherence Tomography Angiography Imaging in Proliferative Diabetic Retinopathy.
Vaz-Pereira S, Morais-Sarmento T, Engelbert M
Diagnostics (Basel). 2021; 11(10).
PMID: 34679567
PMC: 8535055.
DOI: 10.3390/diagnostics11101869.
Polarization properties of retinal blood vessel walls measured with polarization sensitive optical coherence tomography.
Afsharan H, Hackmann M, Wang Q, Navaeipour F, Jayasree S, Zawadzki R
Biomed Opt Express. 2021; 12(7):4340-4362.
PMID: 34457418
PMC: 8367251.
DOI: 10.1364/BOE.426079.
Optical Coherence Tomography and Glaucoma.
Geevarghese A, Wollstein G, Ishikawa H, Schuman J
Annu Rev Vis Sci. 2021; 7:693-726.
PMID: 34242054
PMC: 9184968.
DOI: 10.1146/annurev-vision-100419-111350.
Noise and bias in optical coherence tomography intensity signal decorrelation.
Uribe-Patarroyo N, Post A, Ruiz-Lopera S, Faber D, Bouma B
OSA Contin. 2021; 3(4):709-741.
PMID: 34085035
PMC: 8171193.
DOI: 10.1364/OSAC.385431.
Intact in vivo visualization of telencephalic microvasculature in medaka using optical coherence tomography.
Suzuki T, Ueno T, Oishi N, Fukuyama H
Sci Rep. 2020; 10(1):19831.
PMID: 33199719
PMC: 7669881.
DOI: 10.1038/s41598-020-76468-6.
Optical Coherence Tomography Angiography of Macula and Optic Nerve in Autism Spectrum Disorder: A Pilot Study.
Garcia-Medina J, Rubio-Velazquez E, Lopez-Bernal M, Parraga-Munoz D, Perez-Martinez A, Pinazo-Duran M
J Clin Med. 2020; 9(10).
PMID: 32992534
PMC: 7600045.
DOI: 10.3390/jcm9103123.
Detection of localized pulsatile motion in cutaneous microcirculation by speckle decorrelation optical coherence tomography angiography.
Gong P, Heiss C, Sampson D, Wang Q, Yuan Z, Sampson D
J Biomed Opt. 2020; 25(9).
PMID: 32935499
PMC: 7490763.
DOI: 10.1117/1.JBO.25.9.095004.
A Neural Network Approach to Quantify Blood Flow from Retinal OCT Intensity Time-Series Measurements.
Braaf B, Donner S, Uribe-Patarroyo N, Bouma B, Vakoc B
Sci Rep. 2020; 10(1):9611.
PMID: 32541887
PMC: 7295995.
DOI: 10.1038/s41598-020-66158-8.