» Articles » PMID: 31100191

Automatic Skin Lesion Area Determination of Basal Cell Carcinoma Using Optical Coherence Tomography Angiography and a Skeletonization Approach: Preliminary Results

Overview
Journal J Biophotonics
Date 2019 May 18
PMID 31100191
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Cutaneous blood flow plays a key role in numerous physiological and pathological processes and has significant potential to be used as a biomarker to diagnose skin diseases such as basal cell carcinoma (BCC). The determination of the lesion area and vascular parameters within it, such as vessel density, is essential for diagnosis, surgical treatment and follow-up procedures. Here, an automatic skin lesion area determination algorithm based on optical coherence tomography angiography (OCTA) images is presented for the first time. The blood vessels are segmented within the OCTA images and then skeletonized. Subsequently, the skeleton is searched over the volume and numerous quantitative vascular parameters are calculated. The vascular density is then used to segment the lesion area. The algorithm is tested on both nodular and superficial BCC, and comparing with dermatological and histological results, the proposed method provides an accurate, non-invasive, quantitative and automatic tool for BCC lesion area determination.

Citing Articles

Optical coherence tomography angiography enables visualization of microvascular patterns in chronic venous insufficiency.

Rotunno G, Deinsberger J, Meiburger K, Krainz L, Bugyi L, Hacker V iScience. 2025; 27(11):110998.

PMID: 39759076 PMC: 11700630. DOI: 10.1016/j.isci.2024.110998.


Quantitative assessment of the oral microvasculature using optical coherence tomography angiography.

Zhang T, Zhang Y, Liao J, Shepherd S, Huang Z, Macluskey M Front Bioeng Biotechnol. 2024; 12:1464562.

PMID: 39372434 PMC: 11449849. DOI: 10.3389/fbioe.2024.1464562.


Beyond nothingness in the formation and functional relevance of voids in polymer films.

Kalutantirige F, He J, Yao L, Cotty S, Zhou S, Smith J Nat Commun. 2024; 15(1):2852.

PMID: 38605028 PMC: 11009415. DOI: 10.1038/s41467-024-46584-2.


Tail Artifact Removal via Transmittance Effect Subtraction in Optical Coherence Tail Artifact Images.

Simoncic U, Milanic M Sensors (Basel). 2023; 23(23).

PMID: 38067685 PMC: 10708777. DOI: 10.3390/s23239312.


Optical coherence tomography.

Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C Nat Rev Methods Primers. 2023; 2.

PMID: 36751306 PMC: 9901537. DOI: 10.1038/s43586-022-00162-2.


References
1.
Li A, You J, Du C, Pan Y . Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression. Biomed Opt Express. 2018; 8(12):5604-5616. PMC: 5745106. DOI: 10.1364/BOE.8.005604. View

2.
Scrivener Y, Grosshans E, Cribier B . Variations of basal cell carcinomas according to gender, age, location and histopathological subtype. Br J Dermatol. 2002; 147(1):41-7. DOI: 10.1046/j.1365-2133.2002.04804.x. View

3.
Liew Y, McLaughlin R, Gong P, Wood F, Sampson D . In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography. J Biomed Opt. 2012; 18(6):061213. DOI: 10.1117/1.JBO.18.6.061213. View

4.
Laistler E, Dymerska B, Sieg J, Goluch S, Frass-Kriegl R, Kuehne A . In vivo MRI of the human finger at 7 T. Magn Reson Med. 2017; 79(1):588-592. PMC: 5763334. DOI: 10.1002/mrm.26645. View

5.
Cosgrove D . Angiogenesis imaging--ultrasound. Br J Radiol. 2004; 76 Spec No 1:S43-9. DOI: 10.1259/bjr/86364648. View