» Articles » PMID: 26832446

Using Synthetic Bacterial Enhancers to Reveal a Looping-based Mechanism for Quenching-like Repression

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Feb 3
PMID 26832446
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

We explore a model for 'quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10-11 bp insertions or deletions (INDELs) and sensitive to 5-6 bp INDELs. We test this prediction on 61 σ(54)-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat.

Citing Articles

Coarse-grained modeling reveals the impact of supercoiling and loop length in DNA looping kinetics.

Starr C, Bryant Z, Spakowitz A Biophys J. 2022; 121(10):1949-1962.

PMID: 35421389 PMC: 9199097. DOI: 10.1016/j.bpj.2022.04.009.


Quantifying the regulatory role of individual transcription factors in Escherichia coli.

Guharajan S, Chhabra S, Parisutham V, Brewster R Cell Rep. 2021; 37(6):109952.

PMID: 34758318 PMC: 8667592. DOI: 10.1016/j.celrep.2021.109952.


Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems.

Yu T, Liu W, Brinck M, Davis J, Shek J, Bower G Nat Commun. 2021; 12(1):325.

PMID: 33436562 PMC: 7804116. DOI: 10.1038/s41467-020-20094-3.


A Looping-Based Model for Quenching Repression.

Pollak Y, Goldberg S, Amit R PLoS Comput Biol. 2017; 13(1):e1005337.

PMID: 28085884 PMC: 5279812. DOI: 10.1371/journal.pcbi.1005337.

References
1.
Rappas M, Bose D, Zhang X . Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription. Curr Opin Struct Biol. 2006; 17(1):110-6. DOI: 10.1016/j.sbi.2006.11.002. View

2.
Levo M, Segal E . In pursuit of design principles of regulatory sequences. Nat Rev Genet. 2014; 15(7):453-68. DOI: 10.1038/nrg3684. View

3.
Claverie-Martin F, MAGASANIK B . Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. Proc Natl Acad Sci U S A. 1991; 88(5):1631-5. PMC: 51078. DOI: 10.1073/pnas.88.5.1631. View

4.
Kiupakis A, Reitzer L . ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol. 2002; 184(11):2940-50. PMC: 135064. DOI: 10.1128/JB.184.11.2940-2950.2002. View

5.
Feng J, Goss T, Bender R, Ninfa A . Repression of the Klebsiella aerogenes nac promoter. J Bacteriol. 1995; 177(19):5535-8. PMC: 177361. DOI: 10.1128/jb.177.19.5535-5538.1995. View