» Articles » PMID: 33436562

Multiplexed Characterization of Rationally Designed Promoter Architectures Deconstructs Combinatorial Logic for IPTG-inducible Systems

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jan 13
PMID 33436562
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

A crucial step towards engineering biological systems is the ability to precisely tune the genetic response to environmental stimuli. In the case of Escherichia coli inducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theoretically optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics.

Citing Articles

Systematic representation and optimization enable the inverse design of cross-species regulatory sequences in bacteria.

Zhang P, Du Q, Wang Y, Wei L, Wang X Nat Commun. 2025; 16(1):1763.

PMID: 39971994 PMC: 11840067. DOI: 10.1038/s41467-025-57031-1.


Modeling and designing enhancers by introducing and harnessing transcription factor binding units.

Li J, Zhang P, Xi X, Liu L, Wei L, Wang X Nat Commun. 2025; 16(1):1469.

PMID: 39922842 PMC: 11807178. DOI: 10.1038/s41467-025-56749-2.


transcription factors regulate promoter activity by a universal, homeostatic mechanism.

Parisutham V, Guharajan S, Lian M, Rogers H, Joyce S, Guillen M bioRxiv. 2024; .

PMID: 39713321 PMC: 11661191. DOI: 10.1101/2024.12.09.627516.


Flexibility and sensitivity in gene regulation out of equilibrium.

Mahdavi S, Salmon G, Daghlian P, Garcia H, Phillips R Proc Natl Acad Sci U S A. 2024; 121(46):e2411395121.

PMID: 39499638 PMC: 11573582. DOI: 10.1073/pnas.2411395121.


Delaying production with prokaryotic inducible expression systems.

De Baets J, De Paepe B, De Mey M Microb Cell Fact. 2024; 23(1):249.

PMID: 39272067 PMC: 11401332. DOI: 10.1186/s12934-024-02523-w.


References
1.
van Dijk D, Sharon E, Lotan-Pompan M, Weinberger A, Segal E, Carey L . Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Res. 2016; 27(1):87-94. PMC: 5204347. DOI: 10.1101/gr.212316.116. View

2.
Einav T, Phillips R . How the avidity of polymerase binding to the -35/-10 promoter sites affects gene expression. Proc Natl Acad Sci U S A. 2019; 116(27):13340-13345. PMC: 6613100. DOI: 10.1073/pnas.1905615116. View

3.
Meyer A, Segall-Shapiro T, Glassey E, Zhang J, Voigt C . Escherichia coli "Marionette" strains with 12 highly optimized small-molecule sensors. Nat Chem Biol. 2018; 15(2):196-204. DOI: 10.1038/s41589-018-0168-3. View

4.
Alper H, Fischer C, Nevoigt E, Stephanopoulos G . Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A. 2005; 102(36):12678-83. PMC: 1200280. DOI: 10.1073/pnas.0504604102. View

5.
Choy H, Adhya S . Control of gal transcription through DNA looping: inhibition of the initial transcribing complex. Proc Natl Acad Sci U S A. 1992; 89(23):11264-8. PMC: 50530. DOI: 10.1073/pnas.89.23.11264. View