» Articles » PMID: 2000372

Role of Integration Host Factor in the Regulation of the GlnHp2 Promoter of Escherichia Coli

Overview
Specialty Science
Date 1991 Mar 1
PMID 2000372
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

The glnHPQ operon of Escherichia coli encodes components of the high-affinity glutamine transport system. One of the two promoters of this operon, glnHp2, is responsible for expression of the operon under nitrogen-limiting conditions. The general nitrogen regulatory protein (NRI) binds to two overlapping sites centered at -109 and -122 from the transcription start site and, when phosphorylated, activates transcription of glnHp2 by catalyzing isomerization of the closed sigma 54-RNA polymerase promoter complex to an open complex. The DNA-bending protein integration host factor (IHF) binds to a site immediately upstream of glnHp2 and enhances the activation of open complex formation by NRI phosphate. The NRI-binding sites can be moved several hundred base pairs further upstream without altering the ability of NRI phosphate to activate open complex formation. We propose that the IHF-induced bend can facilitate or obstruct the interaction between NRI phosphate and the closed complex depending on the relative positions of NRI phosphate and sigma 54-RNA polymerase on the DNA.

Citing Articles

Elucidation of Sequence-Function Relationships for an Improved Biobutanol Biosensor in .

Kim N, Sinnott R, Rothschild L, Sandoval N Front Bioeng Biotechnol. 2022; 10:821152.

PMID: 35265600 PMC: 8899819. DOI: 10.3389/fbioe.2022.821152.


Whole-Genome Analysis Reveals That the Nucleoid Protein IHF Predominantly Binds to the Replication Origin Specifically at the Time of Initiation.

Kasho K, Oshima T, Chumsakul O, Nakamura K, Fukamachi K, Katayama T Front Microbiol. 2021; 12:697712.

PMID: 34475859 PMC: 8407004. DOI: 10.3389/fmicb.2021.697712.


Redefining fundamental concepts of transcription initiation in bacteria.

Mejia-Almonte C, Busby S, Wade J, van Helden J, Arkin A, Stormo G Nat Rev Genet. 2020; 21(11):699-714.

PMID: 32665585 PMC: 7990032. DOI: 10.1038/s41576-020-0254-8.


RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions.

Miller C, Romero M, Karna S, Chen T, Heeb S, Leung K BMC Microbiol. 2016; 16(1):155.

PMID: 27430253 PMC: 4950607. DOI: 10.1186/s12866-016-0771-y.


Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression.

Brunwasser-Meirom M, Pollak Y, Goldberg S, Levy L, Atar O, Amit R Nat Commun. 2016; 7:10407.

PMID: 26832446 PMC: 4740811. DOI: 10.1038/ncomms10407.


References
1.
Santero E, Hoover T, Keener J, Kustu S . In vitro activity of the nitrogen fixation regulatory protein NIFA. Proc Natl Acad Sci U S A. 1989; 86(19):7346-50. PMC: 298058. DOI: 10.1073/pnas.86.19.7346. View

2.
Drummond M, Whitty P, Wootton J . Sequence and domain relationships of ntrC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. EMBO J. 1986; 5(2):441-7. PMC: 1166750. DOI: 10.1002/j.1460-2075.1986.tb04230.x. View

3.
Gralla J . KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J Biol Chem. 1989; 264(14):8074-81. View

4.
Nohno T, Saito T, Hong J . Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Mol Gen Genet. 1986; 205(2):260-9. DOI: 10.1007/BF00430437. View

5.
Su W, Porter S, Kustu S, Echols H . DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc Natl Acad Sci U S A. 1990; 87(14):5504-8. PMC: 54353. DOI: 10.1073/pnas.87.14.5504. View