» Articles » PMID: 26299574

Resin-acid Derivatives As Potent Electrostatic Openers of Voltage-gated K Channels and Suppressors of Neuronal Excitability

Overview
Journal Sci Rep
Specialty Science
Date 2015 Aug 25
PMID 26299574
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Voltage-gated ion channels generate cellular excitability, cause diseases when mutated, and act as drug targets in hyperexcitability diseases, such as epilepsy, cardiac arrhythmia and pain. Unfortunately, many patients do not satisfactorily respond to the present-day drugs. We found that the naturally occurring resin acid dehydroabietic acid (DHAA) is a potent opener of a voltage-gated K channel and thereby a potential suppressor of cellular excitability. DHAA acts via a non-traditional mechanism, by electrostatically activating the voltage-sensor domain, rather than directly targeting the ion-conducting pore domain. By systematic iterative modifications of DHAA we synthesized 71 derivatives and found 32 compounds more potent than DHAA. The most potent compound, Compound 77, is 240 times more efficient than DHAA in opening a K channel. This and other potent compounds reduced excitability in dorsal root ganglion neurons, suggesting that resin-acid derivatives can become the first members of a new family of drugs with the potential for treatment of hyperexcitability diseases.

Citing Articles

Carboxyl-group compounds activate voltage-gated potassium channels via a distinct mechanism.

Ronnelid O, Elinder F J Gen Physiol. 2024; 156(7).

PMID: 38832889 PMC: 11148469. DOI: 10.1085/jgp.202313516.


Therapeutic role of voltage-gated potassium channels in age-related neurodegenerative diseases.

Urrutia J, Arrizabalaga-Iriondo A, Sanchez-Del-Rey A, Martinez-Ibarguen A, Gallego M, Casis O Front Cell Neurosci. 2024; 18:1406709.

PMID: 38827782 PMC: 11140135. DOI: 10.3389/fncel.2024.1406709.


A novel Hv1 inhibitor reveals a new mechanism of inhibition of a voltage-sensing domain.

Zhao C, Hong L, Riahi S, Lim V, Tobias D, Tombola F J Gen Physiol. 2021; 153(9).

PMID: 34228045 PMC: 8263925. DOI: 10.1085/jgp.202012833.


Resin-acid derivatives bind to multiple sites on the voltage-sensor domain of the Shaker potassium channel.

Ejneby M, Gromova A, Ottosson N, Borg S, Estrada-Mondragon A, Yazdi S J Gen Physiol. 2021; 153(4).

PMID: 33683319 PMC: 7944402. DOI: 10.1085/jgp.202012676.


Coupling stabilizers open K1-type potassium channels.

Ejneby M, Wallner B, Elinder F Proc Natl Acad Sci U S A. 2020; 117(43):27016-27021.

PMID: 33051293 PMC: 7604479. DOI: 10.1073/pnas.2007965117.


References
1.
Liin S, Ejneby M, Barro-Soria R, Skarsfeldt M, Larsson J, Starck Harlin F . Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel. Proc Natl Acad Sci U S A. 2015; 112(18):5714-9. PMC: 4426425. DOI: 10.1073/pnas.1503488112. View

2.
Leaf A, Kang J, Xiao Y, Billman G, Voskuyl R . The antiarrhythmic and anticonvulsant effects of dietary N-3 fatty acids. J Membr Biol. 1999; 172(1):1-11. DOI: 10.1007/s002329900578. View

3.
Tashima T, Toriumi Y, Mochizuki Y, Nonomura T, Nagaoka S, Furukawa K . Design, synthesis, and BK channel-opening activity of hexahydrodibenzazepinone derivatives. Bioorg Med Chem. 2006; 14(23):8014-31. DOI: 10.1016/j.bmc.2006.07.042. View

4.
Borjesson S, Parkkari T, Hammarstrom S, Elinder F . Electrostatic tuning of cellular excitability. Biophys J. 2010; 98(3):396-403. PMC: 2814211. DOI: 10.1016/j.bpj.2009.10.026. View

5.
Moshe S, Perucca E, Ryvlin P, Tomson T . Epilepsy: new advances. Lancet. 2014; 385(9971):884-98. DOI: 10.1016/S0140-6736(14)60456-6. View