» Articles » PMID: 25589925

Fragment-based Discovery of Type I Inhibitors of Maternal Embryonic Leucine Zipper Kinase

Abstract

Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 μM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology.

Citing Articles

Diversified ring expansion of saturated cyclic amines enabled by azlactone insertion.

Wu L, Xia H, Bai J, Xi Y, Wu X, Gao L Nat Chem. 2024; 16(12):1951-1959.

PMID: 39572777 DOI: 10.1038/s41557-024-01668-w.


Discovery of first-in-class PROTACs targeting maternal embryonic leucine zipper kinase (MELK) for the treatment of Burkitt lymphoma.

Sun Y, Liu X, He Q, Zhang N, Yan W, Lv X RSC Med Chem. 2024; 15(7):2351-2356.

PMID: 39026635 PMC: 11253867. DOI: 10.1039/d4md00252k.


FGDB: a comprehensive graph database of ligand fragments from the Protein Data Bank.

Toti D, Macari G, Barbierato E, Polticelli F Database (Oxford). 2022; 2022.

PMID: 35763362 PMC: 9239314. DOI: 10.1093/database/baac044.


Consensus Virtual Screening Identified [1,2,4]Triazolo[1,5-b]isoquinolines As MELK Inhibitor Chemotypes.

Racz A, Palko R, Csanyi D, Riedl Z, Bajusz D, Keseru G ChemMedChem. 2021; 17(2):e202100569.

PMID: 34632716 PMC: 9298037. DOI: 10.1002/cmdc.202100569.


Enigmatic MELK: The controversy surrounding its complex role in cancer.

McDonald I, Graves L J Biol Chem. 2020; 295(24):8195-8203.

PMID: 32350113 PMC: 7294088. DOI: 10.1074/jbc.REV120.013433.


References
1.
Warmuth M, Kim S, Gu X, Xia G, Adrian F . Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol. 2006; 19(1):55-60. DOI: 10.1097/CCO.0b013e328011a25f. View

2.
Gray D, Jubb A, Hogue D, Dowd P, Kljavin N, Yi S . Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers. Cancer Res. 2005; 65(21):9751-61. DOI: 10.1158/0008-5472.CAN-04-4531. View

3.
Cao L, Wang J, Chen Y, Deng H, Wang Z, Wu J . Structural basis for the regulation of maternal embryonic leucine zipper kinase. PLoS One. 2013; 8(7):e70031. PMC: 3724675. DOI: 10.1371/journal.pone.0070031. View

4.
Ku J, Shin Y, Kim D, Kim K, Choi J, Hong S . Establishment and characterization of 13 human colorectal carcinoma cell lines: mutations of genes and expressions of drug-sensitivity genes and cancer stem cell markers. Carcinogenesis. 2010; 31(6):1003-9. DOI: 10.1093/carcin/bgq043. View

5.
Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M . Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 5):480-7. DOI: 10.1107/S0907444911010201. View